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FOREWORD

This is a set of four lectures and four readings on quantum information and
quantum computation that was originally prepared for the 2025 - 2026 Quantum
Hackathon at the University of Colorado Boulder (CU Boulder). They are intended
for advanced undergraduate students who are enrolled in CU Boulder’s Quantum
Scholars program.

These notes cover several important topics in quantum information and quantum
computing theory, including: the postulates of quantum mechanics, the Einstein—
Podolsky—Rosen (EPR) paradox, Bell’s theorem, the CHSH non-local game, the
quantum circuit model of quantum computation, and Grover’s algorithm.

It is assumed that readers are proficient in linear algebra. Ideal readers are
also familiar with (but not necessarily proficient in) computability theory, quantum
mechanics, probability theory, and a programming language such as Python. That
said, the essential ideas from these topics are comprehensibly covered, so anyone
lacking this “ideal” background can in principle follow along.

The four lecture notes are more or less verbatim what will be said in class,
while the four readings are to be done “at home”. That said, you are encouraged to
discuss the readings with others in the course. Embedded in the readings are several
problems, and readers should try their hand at these problems before moving past
them, as the material only builds.

Please keep in mind that these notes were written on a tight schedule. In
consequence, the notes are in no way a comprehensive treatment of the dis-
cussed topics, nor are they guaranteed to be error-free. Corrections by email
to matthew.fox@colorado.edu are welcome.


mailto:matthew.fox@colorado.edu

L1ST OF ABBREVIATIONS AND SYMBOLS

if and only if

set containment (“in”)

universal quantifier (“for all”)

existential quantifier (“there exists”)

set of positive integers (0 ¢ N)

set of real numbers

set of complex numbers

N-dimensional complex vector space

set of n-bit strings

set of finite length bit strings

set of N x N unitary matrices

big O notation

probability

expectation value

nearest integer function

complex conjugate

matrix transpose

conjugate transpose (Hermitian conjugate)
length of z if z € {0,1}", modulus of z if z € C
logical AND

logical exclusive OR (addition modulo 2)
tensor product

ket vector

bra vector

bra-ket (“bracket”) inner product
bra-ket (“bracket”) outer product



PART 1
A MoST INCOMPREHENSIBLE THING



LECTURE 1

A MoST INCOMPREHENSIBLE THING

In this first lecture, we will review the Stern—Gerlach experiment and a simplified
version of Bell’s theorem. Part of this presentation is based on David Albert’s
outstanding book Quantum Mechanics and Experience. The overarching point of
this lecture is that quantum mechanics is inimitably bizarre. Perhaps, as we will
explore at length in Parts [II and IV of these notes, such bizarreness will manifest
into a sort of “quantum computational advantage”.

1.1. AN EXPERIMENTAL FACT OF LIFE: THE STERN-GERLACH EXPERIMENT

Every quantum particle (an electron or silver atom, say) appears to have an
intrinsic property that we call color and an intrinsic property that we call hardness.
Whenever we look to see what the color of a particle is, we only ever see it to be
either white (w) or black (b). Likewise, whenever we look to see what the hardness
of a particle is, we only ever see it to be either hard (h) or soft (s). For decades, no
other color or hardness has ever been seen, so we are confident that these are the
only possible color and hardness values.

It is possible to build a color box, C, which resolves the color of a particle. It
acts by taking in a particle on the left, whose color can be known or unknown, and
then, after a short time, ejecting the same particle on the right on either the top
track, if the color of the particle is white, or on the bottom track, if the color of the
particle is black. Diagrammatically,

b

Similarly, we can build a hardness box, H, which resolves the hardness of a particle,
akin to how a color box resolves the color of a particle. It looks like this:



h

S

We may wonder if color and hardness are correlated. But, after many trials of
feeding only hard particles into a color box, we conclude they are not because, in
aggregate, 50% of the hard particles came out black and 50% came out white:

5 50%

Exercise 1.1. How can we do this experiment without a source of hard particles?

Interestingly, the same 50/50 statistics result if we instead feed soft particles
into a color box, white particles into a hardness box, or, finally, black particles into
a hardness box. These results only reaffirm our previous conclusion that hardness
and color are not correlated.

Now consider the following apparatus, in which via a simple placement of
mirrors, say, we merge the output paths into a single path:

Specifically all we have done here directed the hard and soft beams into one, which
experiments decidedly show do not affect the hardness or color of a particle.

Given this new apparatus, suppose we now we feed many white particles into it
and then measure the hardness of the combined h + s beam, as in:

Exercise 1.2. Given what has been said so far, at the output of the first hardness
box (left), what percentage of white particles do you expect to come out soft and
what percentage do you expect to come out hard?

Now consider the simple variation below, where instead of inputting a white
particle we input a hard particle, and instead of measuring its hardness after
merging the beams, we measure its color:



Exercise 1.3. What statistics do you expect?

Now consider one final variation to this experiment. Suppose into this apparatus
we input a white particle, as opposed to a hard particle, and then, after merging
the two beams, we measure its color like in the previous experiment:

h W
w h S C

S b

Given the reasoning we’ve used so far, there are two ways you might go here.
On one hand, we input white particles, so it is natural to expect only white particles
to emerge. On the other hand, at the output of the hardness box, we expect 50%
of the white particles to be soft and 50% to be hard. Combining the beams does
not change hardness or color, so these statistics should hold in the combined h + s
beam. We therefore expect 50% of the input to the color box to soft and 50% to be
hard. Therefore, one could also expect 50% of the output to be white and 50% to
be black.

Exercise 1.4. What statistics do you expect?

In fact, 100% of the output is white. No black particles ever emerge from this
apparatus.

Let’s look more closely at this experiment. Since the output of a color box is
white if and only if the input is white, it must be that the h 4+ s beam is composed
of only white particles. But the h + s beam comes from combining the individual
h and s beams, so the individual h and s beams must themselves be exclusively
composed of white particles.

Let’s test this hypothesis by blocking off the s path:

h

h C
b

If the above hypothesis is correct, then 100% of the output ought to be white.

Exercise 1.5. What statistics do you expect?



In fact, instead of finding that the output is 100% white particles, the output
goes back to 50% white and 50% black. The same thing happens if we instead
blocked off the internal hard beam.

Now, in the context of this experiment, consider the following question:

Along which internal path (h or s) did the inputted white particle go?

Exercise 1.6. Discuss what you think the answer is with those around you.

In fact, in asking this question, we have ostensibly revealed that the present
state of affairs is in tension with basic logic. To see why, consider the possibilities:

o If it took h, then blocking the s path should have no effect. But, as we just
saw, blocking the s path does have an effect: the output statistics change.

o If it took s, then blocking the h path should have no effect. But, like in the
last experiment, blocking the h path does have an effect: the output statistics
change.

e Maybe it somehow took both? Suppose, then, that when the particle is
traversing the internal path we closely scrutinize the two tracks. No matter
how we look, we invariably see it on only one of the two paths, so it makes no
sense to say that it took both!

o Maybe it took neither? But that’s moonshine: if it takes neither, then blocking
both the h and s paths should have no effect, yet doing that yields no output
at all!

These exhaust the logical possibilities. Surely, then, something is amok with
these color and hardness boxes. After all, what else could be responsible for this
inscrutable behavior? However, after decades of R&D into wildly different color
and hardness boxes, all of which function perfectly but via totally unrelated means,
our credence that it is the experimental apparatus at fault nears zero.

Hence, with exceptionally high credence—higher credence than most other
scientific exploits—we disconcertingly find ourselves with this:

Particles passing through this last apparatus, to the extent that we are able
to understand them, do not take the internal route h, nor the internal
route s, nor both, nor neither.

10



These exhaust the logical possibilities. Therefore, if this is right—and again we
have exceptionally good evidence that it is—then there can be no fact of what
internal route the particle took. In other words, despite our ability to measure
the hardness of a white particle and to obtain, in every instance of measuring, a
demonstrable fact of the matter of what we measure the hardness of the white
particle to be, before we measure the hardness, there is no fact of the hardness of
a white particle. In the philosopher David Albert’s words, “asking which internal
path the particle took is like asking what is the marital status of the number 5.” It
is, in philosophical terms, a category mistake. There is simply no fact of the matter
of the question we are asking.

All of this suggests that in this experiment, something new and extraordinary is
happening pre-measurement. As we will come to study mathematically in Part II,
that extraordinary thing is called quantum superposition.

Exercise 1.7. Discuss with your group how you feel /think about this. Is there
anything in your day-to-day that resembles a quantum superposition?

Much of quantum computing rests on our ability to create quantum superposi-
tions, and then, in some sense, to compute a bunch of things in parallel. We will
see an example of this when we discuss Grover’s algorithm in Part V.

1.2. ANOTHER EXPERIMENTAL FACT OF LIFE: BELL'S THEOREM

Yet another bizarre feature of quantum mechanics stems from something called
entanglement, which we will formally introduce in Part I1. In fact, this feature (called
a Bell inequality violation) is arguably the most quantum thing about quantum
mechanics.

Definition 1.1. Let S be a physical system with measurable properties A, B, and
C, and let

Ns(A, B,C) = # times we see S with A, B, and C'
Ns(A, B,C) = # times we see S with A, B, and NOT C
Ns(A, B) = # times we see S with A and B,

Example 1.1.

e Sis a car, A is “its speed is 42 mph relative to the road”, B is “its GPS
coordinates are (45.97639,7.65861)”, and C' is “its color is blue”.
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o Sis astar, A is “its mass is 1.5 times that of the Sun”, B is “its luminosity is
1.1 times that of the Sun”, and C' is “its angular momentum is 0.4 times that
of the Sun”.

« S is an electron, A is “its color is black” (a.k.a. “its spin state is up along
the z-axis”), B is “its hardness is hard” (a.k.a. “its spin state is up along the
y-axis”), and C'is “its spin state is up along the z-axis” (which we could give
another fun name, e.g., whimsey).

Claim 1.1. For all systems S with measurable properties A, B, and C,
Ns(A, B) + Ng(B,C) > Ng(A,C).
Proof. The right-hand side equals

RHS = Ng(A,C)
= Ng(A, B,C) + Ns(A, B, C).
The left-hand side equals
LHS = Ng(A, B) + Ng(B, 0)

= Ns(A,B,C) +NS(A7376) —'_NS(A?Baé) +NS<A7Baé>
) ) _ RHS

= Ns(A, B, C) + Ns(A7 B, C) + RHS

> RHS.

Theorem 1.2 (A Version of Bell’s Theorem). Let S be two qubits, eq and eg, in
the Bell state |®T), and consider the measurable properties

o A = the state of e4 is up along the z-awis,
e B = the state of eg is up along the 0-axis,
o C = the state of ep is up along the 20-axis.
Then, for sufficiently small 8 > 0,
Ns(A, B) + Ns(B,C) < Ng(A,C).

What the heck is going on will have to wait. Interestingly, though, in certain
models of quantum computation that exhibit a provable quantum advantage (e.g.,
quantum shallow circuits), their advantage is reducible to a Bell inequality violation
like this.

12



READING 1

COMPUTATION IS PHYSICAL

Quantum computation, unsurprisingly, is about computation. But what is compu-
tation? In this reading, you will learn a few of the essential parts of the answer.
For the full answer, I encourage you to take a course on computability theory in the
computer science department. For us in the physics department, however, the key
idea will be that computation—whatever it is—is governed by the laws of physics.

1.1. BINARY ENCODINGS

Computers compute. But what is it that they are computing? If you think hard
about it, perhaps you’ll convince yourself that computers compute functions. And
in particular, I claim, they compute boolean functions, which are functions that
map binary strings (a sequence of zeroes and ones) to binary strings.

But wait! A computer can compute the function that maps an integer (e.g.,
42) to a list of integers consisting its prime decomposition (e.g., [2,3,7]). Where is
the binary in that? Or what about the WolframAlpha-like function that maps a
string of text and mathematical symbols (e.g., “What is [;  d2z?”) to a rational
number (e.g., 1/2)? Where is the binary in that? Or, as one more example, what
about the ChatGPT-like function that maps a string of text (e.g. “Write an essay
about quantum computation in the style of Shakespeare”) to a decent, human-like
response to the input string (e.g., “O, what a marvel is this quantum computation,
a realm where the very fabric of thought and matter doth intertwine! ...”). Where
is the binary in that?

The answer to all of these questions is that both the input and output can
be encoded in binary. We will show how this works for integers in a moment,
but hopefully the more general claim is somewhat believable. After all, in your
day-to-day, you only ever use a finite number of symbols to express yourself, to ask
questions, to give answers, and so forth. This means that to each symbol you can
associate a unique binary string (as in, for example, ASCII), so that text, numbers,
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mathematical symbols, etc. can all be encoded in binary.

To understand how this works for integers, let N = {1,2,3,4,...} be the set of
positive integers and, for every positive integer n € N, let {0, 1}" be the set of all
n-bit strings. For example,

{0,1}' ={0,1} and {0,1}* = {00,01,10,11}.
Problem 1.1.
(a) Find {0, 1}3.
(b) Show that for all n € N, the set {0,1}" contains 2" elements.

We will now describe the canonical encoding of integers as binary strings. We
will not prove its correctness, but you are encouraged to think about it.

Example 1.2. Given a positive integer N € N, let n € N be the smallest positive
integer such that N < 2". Then, there exists a unique list of n bits x1,xs9,..., 2, €
{0, 1}, or equivalently a unique string * = z125...x, € {0,1}", such that

N =212" 4 202" 2 oo 4 1,20

Notice that in this encoding scheme, z,, (the last bit in the string x) is the least
significant bit and x; (the first bit in the string x) is the most significant bit. Also,
since by definition n is the smallest positive integer such that N < 2" it holds
that n ~ log N, where the logarithm is taken base 2.! In this way, we can encode
integers as binary strings, and also interpret binary strings as integers.

Consequently, binary strings have both the necessary and sufficient amount
of expressibility to talk about the positive integers. A simple corollary of this is
that there are as many positive integers as there are binary strings. This fact is
paramount to the theory of computation, so in the next problem you are asked to
think about it some more.

Problem 1.2. Let {0,1}* be the set of all finite binary strings,

{0,1}* = |J{0,1}".
neN
Use the encoding scheme discussed in Example 1.2 to argue (or if you are math-
ematically inclined, formally prove) that there are as many elements in the set
{0,1}* as there are positive integers. In other words, argue that {0, 1}* is countably
infinite (as opposed to uncountably infinite, like the real number line R). Conclude
that {0,1}* and N are bijective sets, which implies that every positive integer can
be uniquely encoded as a binary string and vice versa.

n fact, n = |log(N — 1)] + 1, where || is the floor function.

14



1.2. How MANY BOOLEAN FUNCTIONS ARE THERE?

In the last section, we introduced the idea that computers (including quantum
computers) compute functions. In particular, computers compute boolean functions,
which are maps from bit strings to bit strings. In functional notation, a boolean
function f is expressed as follows,>

f:{0,1}" — {0,1}".

In this and the next section, we will study some of the basic properties of
boolean functions. Ultimately, we are working toward a proof that there are
boolean functions that no computer—quantum or not—can compute. That is
rather interesting, for it suggests that perhaps what is so exciting about quantum
computers is not that quantum computers can compute more functions than classical
computers, but rather something more nuanced. Indeed, as we will discuss later,
that is the case: classical computers can compute every function that a quantum
computer can compute, and vice versa.

Claim 1.3. There are uncountably many boolean functions. In other words, there
are as many boolean functions as there are numbers on the real number line R.

Proof. Since {0,1}* and N are bijective sets (Problem 1.2), the number of functions
f:{0,1}* — {0,1}* is equal to the number of functions f : N — N. Therefore, it
suffices to analyze how many functions there are that map N to N. To obtain a
contradiction, suppose there are only countably many functions f : N — N. Then,
there are as many such functions as there are positive integers, which implies that
we can enumerate these functions by the positive integers: fi, f2, f3, and so forth.

We will now define a new function that we will prove is not on this list. This
proves the claim, for it contradictc our assumption that there are only countably
many functions f : N — N3

Let h(n) = fn(n) + 1. Clearly h maps positive integers to positive integers, i.e.,
h : N — N. Thus, by assumption, h is one of the functions on the list f1, f2, f3,. ...
In other words, there exists a positive integer k such that h(n) = fz(n) for all
n € N. Therefore, on one hand,

h(k) = fr(k).

2If you have not seen functional notation before, it is merely a notational tool to quickly convey
the domain and codomain of a function. A more general function f that maps elements of a
set X (the domain of f) to a set Y (the codomain of f) is expressed as f : X — Y.

3This proof technique is called diagonalization, and it is ubiquitous in computability theory.
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But, on the other hand, it holds by the definition of h that
h(k) = fr(k) + 1.

Therefore, fi(k)+1 = fi(k), which implies 1 = 0. That is as good as contradictions
get. Hence, our assumption that there are only countably many functions f : N — N
is false, so there must be uncountably many. Since the number of functions
f N — N is the same as the number of boolean functions f : {0, 1}* — {0,1}*, it
follows that there are uncountably many boolean functions as well. |

Okay, there are uncountably many boolean functions, but so what? That doesn’t
seem to get us any closer to the claim that perhaps there are functions that no
computer—no matter how powerful—can compute.

At this point, that is true, because we do not have a formal idea of what it even
means to “compute”. For that, we need the Church—Turing thesis.

1.3. THE CHURCH-TURING THESIS

Among the uncountably many boolean functions, we are particularly interested in
those that we can “compute” in some sense. To get at this, consider the following
informal idea.

Definition 1.2. Say f:{0,1}* — {0, 1}* is effectively calculable iff (“if and only
if”) there exists a finite, pen-and-paper procedure whereby a rote worker can deduce
f(z) for any given x € {0,1}*.

Effective calculability gets at what is hopefully an agreeable notion of what it
means “to compute”, namely, that there is some finite, mechanical (and physical!)
process to evaluate the function f on any input. However, this notion is awkwardly
informal (what is a “pen-and-paper procedure” mathematically?). Ultimately, it is
the purpose of the Church—Turing thesis to formally explicate these ideas.

Thesis 1.4 (Church-Turing Thesis). A function f: {0,1}* — {0,1}* is effectively
calculable iff it is computable by a Python program, i.e., iff there exists a Python
program M such that for all inputs v € {0,1}*, M(x) = f(z).*

Crucially, the Church—Turing thesis is not a statement that one can prove.
Instead, it is a postulate about computability theory that makes an hitherto

4Note, one can replace “Python program” with “deterministic Turing machine”, for example,
because Python is a Turing-complete programming language (as is PowerPoint, by the way).

16



informal idea (effective calculability) mathematically rigorous. It is generally
accepted as correct, as all reasonable models of computation (Turing machines,
circuits, random-access machines, and even all reasonable models of quantum
computers) are provably equivalent in power to Python programs, and so they do
not challenge the Church—Turing thesis. We will return to this point in the next
section. Here, we want to establish that there are, in fact, uncomputable functions,
and we are now in a position to show this.

Problem 1.3.

(a) Use the fact that there are uncountably many boolean functions (Claim 1.3)
to prove that there exists a boolean function that no Python program can
compute. Together with the Church-Turing thesis (Thesis 1.4), conclude that
there are uncomputable functions. (Hint: It suffices to prove that there are only
countably many Python programs. Why is that true? At the end of the day,
what is a Python program but a finite string of symbols that has been typed
out on a keyboard with finitely many keys?)

(b) Argue that, in fact, most boolean functions are uncomputable, in the same
sense that most real numbers are not integers.

(c) Say a real number x € R is computable iff there is a Python program M that
on input n € N, outputs the first n digits of x. For example, 7 is computable,
because there are algorithms that output the first n digits of 7 for any n € N
(e.g., an algorithm that uses the Taylor series for the arctangent function and
computes 4arctan 1 = 7). Use part (b) to argue that most real numbers are
not computable.’

1.4. THE CHURCH-TURING-DEUTSCH THESIS

In quantum computing, we take the perspective that computers are physical devices
that evolve according to the laws of physics. This, of course, is motivated by
the Church—Turing thesis, since the picture of someone working tirelessly with
pen-and-paper, deducing on pain of irrationality f(x) for any given z, is manifestly
physical.

Problem 1.4. Is computational physical? Are computers constrained by physical
law? Write a few sentences explaining how you feel about this.

°For an entertaining discussion of this fact, and how it more or less implies that we humans are
privy to but a negligible fraction of R, see this Numberphile video featuring Matt Parker.
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This motivates the following, highly informal “definition” that is akin to the
notion of effective calculability.

Definition 1.3. Say f: {0,1}* — {0, 1}* is physically calculable iff there exists a
finite, physical system whose mere physical evolution computes f(z) for any given

xz e {0,1}"

Again, this is awkwardly informal. Moreover, physical calculability comes
across as substantially less anthropomorphic than effective calculability, as there
is no mention of a “worker” here. That said, the effective calculability picture
is nevertheless physical, so physical calculability subsumes the notion of effective
calculability. Together with the Church—Turing thesis, this intuition suggests the
following claim.

Claim 1.5. If f : {0,1}* — {0,1}* is computable by a Python program, then f is
physically calculable.

Problem 1.5.

(a) Do you think this is reasonable?

(b) What about the converse? Do you think there is a physically calculable function
f:{0,1}* — {0,1}* (computed, perhaps by the interactions of a bunch of
electrons or, more exotically, the Hawking radiation from a Schwarzschild black
hole) that is not computable by any Python program?

In fact, it is generally believed that every physically calculable function is
computable. This is largely based on two ideas: (1) that quantum systems can be
simulated by classical computers and (2) reductionism, i.e., that quantum mechanics
underlies everything there is in the universe.® Put together, this belief constitutes
its own thesis:

Thesis 1.6 (Church-Turing-Deutsch Thesis). A function f:{0,1}* — {0,1}* is
physically calculable iff it is computable by a Python program.

Again, like the Church—Turing thesis, this statement is not something that one
can prove. Instead, its purpose is to make mathematically precise an hitherto
informal idea (physical calculability). Note also that this thesis is no longer just a

6That said, a result in quantum field theory known as the Nielsen—Ninomiya Theorem suggests
that the Standard Model of particle physics cannot be simulated on a classical computer. This,
however, is up for debate as there are some workarounds.
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postulate about computability theory, but is also a postulate about the physical
world. In my opinion, this elevates the set of all computable functions to the level
of a fundamental constant of nature, on a par with the speed of light ¢, Plank’s
constant h, and Newton’s gravitational constant G.

At this point, we can make the following conclusion: quantum systems (and
quantum computers in particular) cannot compute functions that no classical
computer can. In other words, for every quantum computer, there exists a classical
computer that can simulate it, and vice versa.

But wait! If that’s the case, then what are we doing here? If classical computers
compute the same set of boolean functions as quantum computers, then what is so
exciting about quantum computing?

1.5. FEYNMAN’S VISION

In 1981, the physics Nobel laureate Richard Feynman wrote a famous paper entitled
Simulating Physics with Computers, available here. There, he notes that a faithful
description of an n-state quantum system (typically denoted using Paul Dirac’s
ket notation, [¢))) seems to require at least 2" complex numbers. Therefore, to
accurately simulate the evolution of |¢) on a classical computer would require storing
an exponential number of parameters, so that the overall simulation will take a very
long time (as a function of n). The quantum system, however, merely evolves its
state |1)) with ease according to something called the Schrodinger equation. In this
way, while a quantum system cannot compute a function that no classical computer
can compute (Thesis 1.6), it sure seems that a quantum system ought to be able
to compute a function faster than any classical computer. Indeed, this is what is
so exciting about quantum computing. Its not to do with what is and what is not
computable; its to do with what is and what is not computable efficiently. Overall,
the suspicion of most folks in the quantum computing world is the following.

Conjecture 1.7. There exists a boolean function f that a quantum computer can
compute in so-called “polynomial time”, but any classical computer that computes f

takes “exponential time””

Ultimately, we expect this “quantum advantage” or “quantum speedup” to come
from the inimitable bizarreness of the quantum world. Next lecture, we will start
our study of the essential mathematics that underlies quantum computing.

If you've heard of the complexity class NP, note that Conjecture 1.7 does not imply that we
think quantum computers can solve all the problems in NP because the function f in the
conjecture need not correspond to an NP-complete problem (e.g. factoring integers).
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PART 11
THE POSTULATES OF QUANTUM MECHANICS
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LECTURE 2

THE DESCRIPTION AND EVOLUTION OF QUANTUM SYSTEMS

Discussion 2.1. Discuss with your group what you took away from Part I.

In Part I, we discussed at a high level two bizarre features of quantum mechanics,
namely, superposition and entanglement, which together enable a so-called “Bell
inequality violation”. We also discussed what is means for a computer to compute,
the fact that not all functions are computable, and the fact that quantum computers—
whatever they are—cannot compute more functions than classical computers. That
said, we learned Feynman’s insight that quantum computers might be able to
compute certain functions faster than any classical computer.

In this lecture and the associated reading, we will learn the basic mathematics
that underlie quantum computing. This will include a discussion of the postulates
of quantum mechanics, their mathematical formalism, and the all-important notion
of a qubit.

2.1. THE STATES OF QUANTUM SYSTEMS

Every physical theory has physical primitives that do not have a totally agreeable
definition. For example, a “particle” is a primitive in Newtonian mechanics and in
Einstein’s relativity. In quantum mechanics, the physical primitive is a “quantum
system”. It is a “you know it when you see it” sort of thing that exists in the
real world. If you like reductionism, then most likely every physical system is a
quantum system, although that position is contended by some. Ultimately, though,
we will not define what a “quantum system” is, in the same way that in Newtonian
mechanics we do not define what a “particle” is.

Postulate 2.8.

o To every quantum system S, there corresponds a complex-valued vector space
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(a.k.a. a Hilbert space)

U1
(e

H:CN: : :w17¢27"'5¢N€C )
VN
where N is the dimension of H.

o Vectors in H are called ket vectors. They are denoted using Paul Dirac’s “ket
notation”,

U1
="
Uy
o For all |¢) € H, there exists a dual vector (1|, known as a bra vector, which

formally is in the dual space of H. For our purposes, the bra vector (1| can be
thought of as a row vector that is the conjugate transpose (or dagger, 1) of |1):

(| = o)1
= (lv)")"
= (¥F Y5 - Yh).

o There exists an inner product on H, called the bra-ket (“bracket”) inner product,
given by:

(10) = (¥]l6)
b
b
G I
b

N
=Sl

e The bra-ket inner product induces a norm on H.:

1) = J(@le) = éwm
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« A unit-vector (a.k.a. a normalized vector) is [1)) € H such that
)] = 1.

o A quantum state (or just state) of the system S is a unit-vector in H.

For us, the most important example of a quantum system is that of a qubit.
Example 2.3 (Qubit).

o A quantum bit (or qubit for short), a.k.a. a two-state system, is any quantum
system S whose Hilbert space is two-dimensional:

/HS:(C2:{<ZI> 2¢1,¢2€C}.
2

e The two most important states of a qubit are the computational basis states,
which are just the Cartesian basis vectors of C:

=) 0=

Exercise 2.8. Do you know a quantum system whose Hilbert space is C*? C2"?

Postulate 2.8, and in particular the vector space structure underlying quantum
systems, naturally entails the notion of superposition that we alluded to in Part I.

Fact 2.9 (Superposition). If [¢) and |p) are quantum states, then so is

aly) + Blo)
for all o, B € C such that |a|?> + |B> = 1, where |a|? = a*a and |3]? = B*f.

In Part 111, we will discuss how to encode classical data into a quantum state.
Already, however, we can guess how this will go, given the notation used to label
the computational basis states of a qubit:

0+—|0) and 1<+— |1).

This association constitutes a very natural classical-quantum encoding scheme.
What’s more, though, is that not only are the bit values 0 and 1 faithfully represented
quantumly, but a whole new host of “intermediate values” are as well. In particular,
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thanks to superposition, we can sensibly talk about the state «|0) + 3|1) as a
valid encoding of quantum data. Per our discussion in Part [, this has no classical
counterpart. Thus, quantum mechanics allows quantum computers to have more
complex representations of data than classical computers, and this is one of many
popular arguments for why quantum computers are potentially more powerful that
classical computers.®

Exercise 2.9. Given our discussion of the Stern—Gerlach experiment in Part I,
what would you say the difference is between the states %|0> + %|1> and |0) with

probability 1/2 and |1) with probability 1/27 Discuss with those around you.

2.2. THE EVOLUTION OF QUANTUM SYSTEMS

We will now discuss how quantum systems evolve in time. This is essentially the
I = ma postulate of quantum mechanics.

Postulate 2.10 (The Schrodinger Equation). Let S be a quantum system with
Hilbert space Hg = CN. Absent any “measurements” of the system, if at time t,
the state of S is |1(t1)) and if at time ty # t1 the state of S is |(t2)), then there
exists an N x N unitary matriz U such that

[¥(t2)) = Ulep(tr)).

In other words, with no measurements, every quantum state 1)) € Hg evolves in
time unitarily. This is one form of the Schrodinger equation.”

What does this mean?
Definition 2.4.
o An N x N matrix U is unitary iff U= = UT = (U*)7.

o U(N) = {N x N unitary matrices U}. With matrix multiplication, U(N)
forms a group (in fact, a Lie group) called the unitary group of order N.*

8See, for example, former Canadian Prime Minister Justin Tredeau explaining it here.

9Notice here that ¢, is not necessarily greater than ¢;. Therefore, the evolution of quantum
systems—at least according to the Schrédinger equation—is always reversible.

ORecall, a group is a pair (G, -), where G is a set and - : G x G — G is a binary operation, such
that the operation is associative, G' has an identity element, and G is closed under inverses. A
Lie group is a group that is simultaneously another mathematical structure called a manifold.
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Example 2.4. The following matrices are unitary:
e Iy (the N x N identity matrix),

o the T or 7/8 gate:

1 0 1 0
— T
T = (O eiﬂ/4> ) T = (O e—iﬂ’/4> )

o the H or Hadamard gate:

o the S or phase gate:

(10 F (10
el O R O]

e the X, Y, and Z Pauli matrices:

_ (0 1) _ _ (0 =) oy _
(e v ) e

o the SWAP gate:

1 000
1001 0| t
SWAP = 0100l= SWAP'
0001
o and the controlled-NOT or CNOT gate:
1 000
10010 0] +
CNOT = 000 117 CNOT".
0010

Exercise 2.10.

(1) What is U(1) geometrically?
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(2) Let U € U(N) and [tf1), [¢1) € CN. If |1po) = Ulhy) and |¢o) = Ulgy), prove
that (¢z|1h2) = (d1th1).

This last exercise is important. It reveals that unitary maps preserve the bra-ket
inner product. Therefore, unitary maps are the structure-preserving maps on Hilbert
spaces, in the same way that bijective maps are the structure-preserving maps on
sets, homeomorphisms are the structure-preserving maps on topological spaces,
homomorphisms are the structure-preserving maps on groups, and so forth. This
is the mathematical reason why unitary operators are so important in quantum
mechanics. A related fact is the following.

Fact 2.11. If A is an eigenvalue of U € U(N), then A = €? for some 6 € [0,27).

Therefore, unitary operators do not “scale” the vectors they act on.!' Of course,
given Postulate 2.10, such behavior is expected, for otherwise unitary operators
would not be norm-preserving, so they would not map quantum states to quantum
states.

2.3. APPLICATION: QUANTUM COMPUTERS

We are now in a position to formally discuss what a quantum computer actually is,
at least at a high level. Simply put, a quantum computer is a map that takes as
input a high-dimensional quantum state |¢)) € C*", and then outputs another state
|¢) in the same Hilbert space C?". Pictorially,

quantum
computer

) — — [#)

where time flows from left to right. Therefore, a quantum computer time-evolves a
state |¢) to a different state |¢). By Postulate 2.10, there exists a unitary operator
Uqc € U(2") that implements this transformation:

|¢) = Uqcl)-

Consequently, every quantum computer is a unitary operator. Exactly what unitary
operator depends on the algorithm the computer implements. We will see an
example of this when we discuss Grover’s algorithm in Part V.

UTechnically to reach this conclusion one must study the singular values of the unitary matrix in
question. However, unitary matrices are examples of normal matrices, and the singular values
of normal matrices are the (absolute values of the) eigenvalues.
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2.4. PROJECTIVE MEASUREMENTS

In Postulate 2.10, there was an important qualification to the effect of “quantum
states evolve in time unitarily provided the system is not being measured.” Here,
we discuss what it means “to measure” a quantum system, at least mathematically.
Unfortunately, we can’t do much better than afford a mathematical description
because, at least at the moment, there is no consensus in the physics community
what it really means to measure a quantum system, as nobody knows what the
correct interpretation of quantum mechanics is.'”

Postulate 2.12 (The Collapse Postulate). Let S be a quantum system with Hilbert
space Hg = CV and let B = {|by), |b2),...,|bn)} be an orthonormal basis of Hs.

o Mathematically, to “measure S in the basis B” means to project the state of S
to one of the B basis vectors with a certain probability. In particular, if S is
in the state |¢), then the probability of measuring S to be in the state |b;) is
got by the Born rule:

Pr [state of S is |bl>] = (|11,

b),

where Iy, = |b;){(b;| is the outer product of |b;) with (b;|, which is just the
matriz you get when you multiply the column vector |b;) by the row vector (b;|.
This matriz is also called the projection matrix onto the state |b;).

o Immediately after the measurement, the state of S “collapses” to |b;), which is
to say that the measurement induces the (generally non-unitary) state evolution

|10) = [bs).

Exercise 2.11. Consider a qubit S in the state [)) = «|0) + B|1). If one measures
S in the computational basis, then what is the probability of measuring |0)? |1)?

This exercise reveals the meaning of the coefficients or “amplitudes” in a quantum
state vector. In particular, they correspond to the probability density of seeing the
quantum system in a particular basis state. Since, by the Born rule, we square
these amplitudes to get the probability, it follows that the probability of obtaining
a particular state is actually independent of any sort of “phase” that multiplies it.
For example, the probability of measuring |0) in the states |0) and ¢?|0) is the same,
no matter what @ is. For this reason, we say that |0) and €|0) are operationally

12For more on this and other foundational issues in quantum mechanics, I recommend Adam
Becker’s book What is Real?: The Unfinished Quest for the Meaning of Quantum Physics.
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equivalent because there is no measurement that one can do to distinguish them.
The complete definition is below.

Definition 2.5. Two states 1), |¢) € H are operationally equivalent iff there exists
6 € [0,27) such that |¢) = €?|¢).

The importance of operational equivalence becomes apparent in the following
fact, which shows that an experiment can in principle distinguish two quantum
states iff they are not operationally equivalent.

Fact 2.13 (Corollary of the Helstrom—Holevo Bound). Let S be a quantum system
that is either in state |¢) or |¢). There exists a series of measurements that can in
principle determine which state S is in iff |1) and |¢) are operationally inequivalent.

For this reason, quantum states that differ by an overall phase factor e? are

equivalent, because no experiment—mnot even in principle—can distinguish them.
This fact appears all over quantum mechanics, and it will be relevant when we
study Bell’s theorem in Part I11.'3

B3Incidentally, a more Noetherian interpretation of operational equivalence is that quantum
mechanics exhibits a local U(1) symmetry. This is one of many redundancies in the laws of
physics. For more, consider learning gauge theory.
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READING 2

COMPOSITE SYSTEMS AND ENTANGLEMENT

In the last lecture, we discussed three of the four postulates of quantum mechanics,
namely, the mathematical representation of states of quantum systems, the unitary
evolution of quantum systems, and the non-unitary “collapse postulate”, which
has to do with the action of measuring or, more anthropomorphically, “looking at”
quantum systems.

In this reading, you will learn the final postulate of quantum mechanics, namely;,
the mathematical representation of composite quantum systems. This is important
for quantum computation because only by combining many qubits together will a
quantum computer be able to perform computations on bit strings.

As you will see, the key to talking about composite quantum systems lies in
understanding a single mathematical operation on matrices known as the tensor
product. The tensor product is associated with the cool but intimidating-looking
mathematical symbol ®. I promise, though, that this operation is actually quite
simple. Like normal matrix multiplication, all it takes is a little getting used to.

2.1. THE TENSOR PRODUCT

Definition 2.6. Let A and B be Ny x M4- and Ng x Mpg-dimensional matrices,
respectively. The tensor product of A and B, denoted A® B, is the NaNpg x M4 Mp-
dimensional matrix'*

allB algB s alMAB

anB  axpB --- awn,B
AR B = ) ) ;

a’NAlB CLNAQB e CLNAMAB

where a;; is the entry in the ¢th row and jth column of A.

14The mathematician would point out that technically this is the Kronecker product, which is a
special case of the tensor product. It is also known as the direct product of matrices.
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Below are several examples.

Example 2.5.

e Let

Then,

e Similarly,

Consequently, A® B # B ® A, so like the usual matrix product, the tensor

A®B =

B® A=

product is generally not commutative.

e Let I and Ip; be the N X N and M x M identity matrices, respectively. Then
In ® Iy equals the NM x NM identity matrix Inyy,. Thus, in this special

case, the tensor product is commutative because
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Quantum states are represented by ket and bra vectors. Since these are column
and row vectors, which are just N x 1 and 1 x N matrices, respectively, it
makes sense to take the tensor product of quantum states. To see how this
works, suppose

Y1 o1
) = wf eC¥ and |¢) = ¢:2 e CNe,
¢NA (bNB
Then,
P1 V11
P2 12
U] :
ONp U1ON,
P1 Vo
Z}liz; s O2 (GhYaY
weley =| . |=| | i]|=] | [ec¥w
: ONp Yoy
??NAW : :
(,bl ¢NA¢1
¢2 wNA¢2
Una | :
ONp YN, DN
Similarly,

(W @ (6] = (1o v3lol -+ i, (0l).

In this context, it is often tedious to keep track of all the tensor product symbols.
For this reason, I (and others) will often omit the tensor product symbol ®
when talking about states and instead adopt the notational shorthand

[¥)10) = ) @ |¢) and  (P[(d] = (V] © (4].

However, you should not use this shorthand for more general matrices because
it could easily be confused with matrix multiplication.

You should try your hand at the following problem before continuing.

31



Problem 2.1.

(a) Find the column vector associated with |0)|0) = |0) ® |0). What 2-bit string
would you say this state encodes?

(b) Find the column vector associated with |1)]|0)|0) = |1) ® |0) ® |0). What 3-bit
string would you say this state encodes?

(c¢) Find A ® B, where
2 42 5 1
A—<_5 Z) and B—<_1 2).
Despite not being commutative, the tensor product still enjoys a number of nice

properties.

Fact 2.14 (Useful Properties of the Tensor Product).

(1) (A® B)(C® D) = (AC) ® (BD) whenever the matrix products are well-defined.
(2) (A+ B) e C=AC+B®C.

(3) A (B+C)=A®B+A®C.

(4) (A® B)l = AT @ BT.

Here are some more problems to help you get familiar with the tensor product.
I encourage you to do these before moving on.

Problem 2.2. Use Fact 2.14 to prove the four statements below. In particular, do
not solve these problems by writing the matrices and vectors out in some basis.

(a) If A€ U(N) and B € U(M), then A® B € U(NM). Therefore, the tensor
product of two unitary matrices is itself a unitary matrix.

(b) If A€ U(N), Be UM), |[¢) € CV, and |¢) € CM, then

(A@ B)l¥)le) = (Aly)) @ (Blg)).

Therefore, a tensor product of matrices acts on a tensor product of states in a
very natural way.
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(¢) If [ha), [pa) € CV4 and |ibp), |65) € CV5, then
((Wal{¥s)(|9a)|9B)) = (YalPa) - (VB|PB).

Therefore, the bra-ket inner product of a tensor product of states is the product
of the bra-ket inner products of the two states. (Note the similarity of this
question to the question in (b).)

(d) Let
) = =(10)10) + 1)]1)).
V2
As we will discuss shortly, this is one of the four so-called Bell states. Show
that

(@71(0)(0] © B)#+) =
where 5 is the 2 x 2 identity matrix. (Hint: Use Fact 2.14 as well as parts (b)
and (c).) As you may have guessed, this calculation corresponds to computing
the probability that a subsystem computational measurement of |®) returns
|0). This type of calculation underlies both the EPR paradox and Bell’s theorem
in Part I, so do try to get this one!

2.2. COMPOSITE SYSTEMS

We now have everything we need to understand how to describe two or more
quantum systems as one.

Postulate 2.15. Let A and B be quantum systems with Hilbert spaces H, = CN4
and Hp = CNB | respectively, and let {|a1),. .., |an,)} and {|b1),...,|bn,)} be bases
of Ha and Hp, respectively. The combined quantum system A+ B is described by
the Hilbert space

Harp =Ha®Hp =span{la;) ® [bj) i € {1,...,Na},j € {1,..., Np}}.
In fact, Ha @ Hp = CNalNB 15

Problem 2.3. What is the Hilbert space for a quantum system composed of n
qubits? In other words, if S is a quantum system consisting of n qubits, then
Hg = CV for some positive integer N. What is N in terms of n?

150ne way to prove this is to use the Cartesian bases of H 4 and Hp, evaluate the tensor product
between the various Cartesian basis elements, and then see that the resulting “tensored” basis
is just the Cartesian basis of CNAVE,
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2.3. QUANTUM ENCODINGS

In quantum computing, we want to manipulate mathematical objects on a quantum
computer. Because of this, we need a way to encode the mathematical object into
a quantum state, so that the quantum computer can act on it. To do this, we will
exploit the following observation.

Fact 2.16. The set {0,1} is bijective to the computational basis over C?, {]0),]1)}.
The two possible bijections are

0)

— 0 +— |1)
«— 1)

0 and
1 1 «— |0)

From an information-encoding point of view, the former is the most natural, so
that is what we adopt. This bijection implies that every bit can be encoded into
the quantum state of a qubit.

This conclusion is actually a particular case of a more general observation.

Fact 2.17. For all n, {0,1}" contains 2" elements (Problem 1.1), so {0,1}" is
bijective to the Cartesian basis (a.k.a. the computational basis) over C?",

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2™ elements

Consequently, using any of the bijections between these two sets, one can encode
n-bit classical data into a quantum system with Hilbert space C?". Unlike before,
however, here there are many bijections from {0, 1}" and the computational basis
of C*" (2" many, in fact'®). Nevertheless, from an information-encoding point of
view, the most natural is arguably

T =T1Ty... Ty < |T) = |T129. .. Tp)

= |zp)]xa) - - |wn),

16 Proof: For the first element in {0,1}", there are 2" computational basis states to assign it to,
for the second element in {0,1}", there are 2" — 1 computational basis states to assign it to,
and so forth, for a total of 2"! possible assignments.
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where each |z;) encodes z;, the ith bit of z. We adopt this here.!”
Problem 2.4.

(a) Let 0" denote the n-bit, all zero string 00...0. What is |0") in terms of |0)?

(b) Let S be a quantum system in the state

|w> = Z Oéx|£li>,
x€{0,1}"
which represents a superposition over all n-bit strings. Given y € {0, 1}", what
is the probability that one measures S in the state |y)?

(¢) Let H be the Hadamard gate (Example 2.4) and let H®" denote the n-fold
tensor product H ® H ® --- ® H. Show that

1
He™ 0 = —— ).
)= 3 e
Conclude that if you measure H®"|0™) in the computational basis, then you
obtain y € {0, 1}" with the same probability had you uniformly drew y from
{0,1}"™. Thus, acting H*" on |0") and then measuring in the computational
basis is an n-bit random number generator. This is a primitive example of a
quantum algorithm.

Since all classical data can be represented in binary, this encoding scheme allows
us to encode semantic classical data, such as integers.

Example 2.6. Let N be an integer with binary expansion
N =212" 2" 2 oo 1,20

Then, the n-bit string x1x; ...z, encodes N in binary. One can then encode N
into the state of a quantum system by encoding each of the n-bits of N into its own
qubit, and then combining all of these n qubits together into one large, composite
quantum system:

[N} = lz0)|w2) -+ |2n).

Problem 2.5. Use the quantum encoding scheme in Exercise 2.6 to write |42) in
terms of a tensor product of qubit states.

1"We will not prove it here, but there exist unitary operators that implement the boolean AND,
OR, and NOT operations. Thus, together with this encoding scheme, this fact allows one to
prove that a quantum computer can do anything that a classical computer can do. In this
way, quantum computers are at least as powerful as classical computers. For more on this, I
recommend Nielson and Chuang’s textbook Quantum Information and Quantum Computation.
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2.4. ENTANGLEMENT

In this final section, we will discuss what many argue is the most quintessentially
quantum thing about quantum mechanics. This is entanglement, and it is only
possible for composite quantum systems.

Fact 2.18 (Entanglement). By properties (2) and (3) in Fact 2.1/, it is sometimes
possible to factor superposed quantum states, for example:

[Y1)10) + [¥2)]0) = ([¢1) + [¥2))]6)-

In this case, the state is separable because it can be written as a state from Ha
times a state from Hp. However, this is not always possible, for example:

10210) +[1)]1).

Try as you might, this (unnormalized) state cannot be written as a state from H 4
times a state from Hp. Hence, this state is not separable, instead it is entangled.

Definition 2.7. Let H4 and Hp be Hilbert spaces. A state |¢)) € Ha ® Hp is
separable iff there exist |¢p)4 € Ha and |p)p € Hp such that |¢p) = |p)a|P)p. We
say |¢) is entangled iff it is not separable.

Problem 2.6. Determine whether the following (unnormalized) states are separable
or entangled:

(2) 10)]0) + [1)]0)

(b) 07[0)]0) — [0)]0)[1)

(¢) 10)]0)]0) = [0)[1)[1)

(d) [0)[1)]1) + [1)]0)]0)

(e) [0)]0)]0) + [1)[1)[1)

() 10)[1)]0) + [1)[1)[1)

(g) Would you say the state in (f) is more or less entangled than the state in (e)?

Explain your answer.
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In fact, there is a whole zoo of “entanglement measures” out there, which allow
one to make statements like “this state is more entangled than that state, at least
with respect to this measure”. While there are many subtleties in entanglement
theory, it is the case that for so-called “pure and bipartite states” (which is what
we are dealing with here), there are canonical mazimally entangled states. The four
most relevant to us are the so-called “Bell states”.

Definition 2.8. The four Bell states are the maximally entangled states

D) = \}5(|0 0) + |1)|1))
7= (10010~ IDiv)
Uy = ;§(|o 1) + [1)]0))
12(|0 —|1)/0)).

As we will see in Part 11, the Bell states are key to Bell’s theorem and non-local
games. They also underlie many quantum mechanical protocols, such as superdense
coding and quantum teleportation. In addition to their entanglement properties,
the Bell states form a basis of C* known as the Bell basis. Because of this, they
are sometimes used in place of the computational basis to talk about the state of
2-qubit quantum systems.

Problem 2.7. Show that {|®T), |®~), [¥T), [U~)} is an orthonormal basis of C*.
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PART 111
BELL’S THEOREM AND NON-LocAL GAMES
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LECTURE 3

THE EPR PARADOX AND BELL’S THEOREM

Discussion 3.1. Discuss with your group what you took away from Part II.

In Part 11, we discussed the mathematical foundations of quantum computation
and quantum information. This included a discussion of the postulates of quantum
mechanics, as well as a formal discussion of superposition and entanglement—two
of the most esoteric features of quantum mechanics.

In this lecture and the associated reading, we will explore superpositions and
entanglement in more detail. In particular, we will study two features of quantum
mechanics that these phenomena entail, and we will discuss one way to think about
them (which is in no way the “right” way, by the way; the “right” way, if there
is one, is not presently known). In the reading, you will explore how one of these
features (called a Bell inequality violation) can allow quantum systems to provably
outperform any classical system at something called a non-local game. This is an
example of a provable quantum computational advantage.

3.1. THE EINSTEIN-PODOLSKY-ROSEN (EPR) PARADOX

Consider two people, Alice and Bob, each with a qubit e4 and eg in hand, that are
spatially separated by a distance d. Suppose, further, that the joint state of their
qubits is the (maximally entangled) Bell state

B+) = %(|o>|o> ).

Here, the left ket in each term refers to Alice’s qubit and the right ket refers to
Bob’s qubit. Pictorially, the situation is as follows:
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Ahce

i

l F’)

Now, suppose Alice measures her qubit in the computational basis and Bob
does nothing (which, formally, is to say that Bob applies the 2 x 2 identity operator
I5 to his qubit).

Claim 3.1. The possible outcomes of Alice’s measurement are |0) and |1). Moreover,

1 1
Pr [Alice measures |O>} =—- and Pr [Alice measures |1>} = —.
2 2

Proof. Since Alice is measuring in the computational basis, she will obtain either
|0) or |1) by Postulate 2.12. Moreover, by the Born rule,

Pr [Alice measures |0>] = (®7)(|0)(0] @ I5)|®T).
You calculated this in Problem 2.2. For completeness, though, here’s the answer:

r |Alice measures |0>} (®1](]0)(0] ® I5)|®T)

l 12 (0[{0] + 1|<1|)1 (10)(0] ® I) U§U0>|O>+|1>|1>)]
1
"2

{001 (Ol + (1001 @ {1122 00} + 1)1
=1 =0

(0l 1] [[9}0) + i)

1
2
21
— 5| )00 + ) oI
. 0
2

A similar calculation establishes that Pr[Alice measures |1)] = 1/2.1 |

18 Alternatively, by the law of total probability (i.e., the rule that all probabilities sum to one),
Pr[Alice measures |1)] = 1 — Pr[Alice measures [0)] =1—1/2 =1/2.
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Exercise 3.1. Given Claim 3.1—in particular that Alice will measure her qubit in
either the state |0) or |1)—argue that

o if Alice measures |0), then the joint state |®T) collapses to [0)|0),
o if Alice measures |1), then the joint state |®T) collapses to |1)[1).

Thus, the possible states of the composite system after Alice measures are

|0)|0) with probability

N —DN| —

|1)|1) with probability

Consequently, if Alice measures |0), then she knowns with certainty that Bob,
whenever he chooses to measure his side of the system, will see his qubit in state |0)
as well. This implies that at the instant Alice measures, there becomes a definite
fact of the matter of what state Bob has (either |0) or |1)), and this is despite the
two facts, but actually in no way in contradiction to them, that (1) Bob might be
lightyears away (the distance d between Alice and Bob never showed up in this
calculation) and (2) that before Alice measured, there was no fact of the matter of
what Bob’s state was!

To help get at what is so weird about this, it can be helpful to contrast the
EPR experiment with a more classical version of the same experiment. To this end,
suppose that instead of qubits, Alice and Bob each have a closed briefcase with
either a red or blue card inside. Alice and Bob both know that they have the same
colored card inside, but neither knows which. Thus, by the Bayesian principle of
indifference, both would say that when they look inside their case, they will both
see red with probability 1/2 and blue with probability 1/2. This is analogous to the
situation in EPR, where, after either Alice or Bob measure their qubits, the final
state of the two qubits is either |00) with probability 1/2 or |11) with probability
1/2.

Now suppose Alice and Bob are separated some distance d, and then Alice looks
in her case and sees a red card. By the setup of the experiment, she can conclude
with certainty that Bob also has a red card in his case. This inference, like EPR, is
independent of the distance d, but that should not be surprising: the cards that
Alice and Bob have are correlated. The difference in the card experiment, though,
is that throughout the entire experiment, there was always a fact of what card
Alice and Bob had in their cases: it was set when the two cases were closed. With
the qubits in the EPR experiment, however, only through the act of either Alice
or Bob measuring their qubit did there become a definite fact of what the state of
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their and the other’s qubit was. Thus, in some way, Alice’s act of measuring her
qubit reified Bob’s qubit, and this occurred faster than the time it would take for
light to go from Alice and Bob.

This is called the EPR paradox after physicists Albert Einstein, Boris Podolsky,
and Nathan Rosen who described it in their famous 1935 paper Can Quantum-
Mechanical Description of Physical Reality be Considered Complete?, available
here. Ostensibly, the EPR paradox demonstrates a sort of quantum mechanical
non-locality, or, in Einstein’s words, “spooky action at a distance”.

Exercise 3.2. Discuss with those around you how you feel about this. Do you
agree with Einstein that this behavior is “spooky” in that it is apparently at odds
with the theory of relativity?

3.2. BELL’S THEOREM

The EPR paradox hints at a sort of non-locality in quantum mechanics. Ultimately,
EPR argue that this is an insuperable problem for quantum mechanics as we have
so far presented it. To fix it, they proposed that there must be so-called “hidden
variable” that afford a more complete description of the quantum state |®*) that
Alice and Bob share. In particular, there must be a local description of the state
that Alice has and a local description of the state that Bob has, so that there can
be no non-local reification of Bob’s state when Alice measures her (or vice versa).
This sort of idea says that there must be a fact of the state of Alice’s qubit and the
state of Bob’s qubit before measuring, in the same way that in the card experiment
from above, there was a fact of what color card Alice had and what color card Bob
had before either looked in their case.

A question that naturally follows this discussion is whether such a local descrip-
tion of the EPR experiment is actually possible. If the answer is no, then we will
have to accept the type of non-locality apparent in the EPR paradox as a property
of our physical reality."’

In 1964, the physicist John Bell published his paper On the Finstein—Podolsky—
Rosen Paradox, available here. There, he established that under the standard
“Copenhagen” interpretation of quantum mechanics (which is the theory of quantum

9We note that the exact nature of this non-locality is somewhat philosophical, as it has to do
with the ontology of the physical world, i.e., what is real and what is not. Of course, that
we are teetering on philosophical ideas, as opposed to concrete physical ideas, is not, in my
opinion, a good argument against the EPR paradox. Indeed, as the philosopher Daniel Dennett
likes to say, “there is no such thing as philosophy-free science, only science whose philosophical
baggage is taken on board without examination.”
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mechanics that we presented in Part 1), there is indeed a genuine non-locality in
quantum mechanics that is, vitally, experimentally testable. This is called Bell’s
theorem.

Here, we will describe a simplified version of his argument, which these days is
called a Bell inequality violation. The rough idea is to establish a mathematical
inequality of the form a > b that all classical systems obey, and then to show
that, nevertheless, there are quantum systems for which a < b. The relationship to
non-locality comes from interpreting how the system violated the inequality.

Definition 3.1. We say the state of a qubit is up along the 0-axis iff its state is
1) = cos @ |0) +sind |1).

Likewise, we say the state of a qubit is down along the 6-axis iff its state is
[lg) =sin @ |0) — cos@ |1).

These names derive from a geometric way of thinking about qubit states known
as the Bloch sphere, which you are encouraged to read about on your own time.

Exercise 3.3. Show that these states form an orthonormal basis of C2. Conclude
that for all @ € [0, 27), the spin of a qubit along the f-axis is a measurable property
of a qubit, as one can measure it in the basis {|1y), [{9)}-

Now, recall from Part I the following definition, example, and fact.

Definition 3.2. Let S be a physical system with measurable properties A, B, and
C, and let

Ns(A, B,C) = # times we see S with A, B, and C'
Ns(A, B,C) = # times we see S with A, B, and NOT C
Ns(A, B) = # times we see S with A and B,

Example 3.1.

e Sis a car, A is “its speed is 42 mph relative to the road”, B is “its GPS
coordinates are (45.97639,7.65861)”, and C' is “its color is blue”.

e Sis a star, A is “its mass is 1.5 times that of the Sun”, B is “its luminosity is
1.1 times that of the Sun”, and C' is “its angular momentum is 0.4 times that
of the Sun”.
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e S is an electron, A is “its spin state is up along the z-axis”, B is “its spin
state is up along the y-axis”, and C'is “its spin state is up along the z-axis”.

Fact 3.2 (Example of a Bell Inequality). For all systems S with measurable
properties A, B, and C,

Ns(A, B) + Ng(B,C) > Ng(A,C).

This is the inequality that we can violate in quantum mechanics, as we shall
now see. Such a violation is an example of a Bell inequality violation.

Theorem 3.3 (A Version of Bell’s Theorem). Let S be two qubits, eq and eg, in
the Bell state |®T), and consider the measurable properties

o A = the state of ey is up along the 0-azxis (a.k.a. the z-axis, a.k.a. |0)),
e B = the state of eg is up along the 0-axis,
o (' = the state of ep is up along the 20-axis.

Then, for sufficiently small 6 > 0,
Ns(A, B) + Ns(B,C) < Ng(A, C).

You should think of the setup here as exactly the same as in the EPR experiment,
where Alice and Bob each have a qubit in hand (e4 and ep, respectively), and that
they are spatially separated. The only difference here is that Alice and Bob are
going to measure their qubits in bases other than the computational basis. Let’s
see what happens when they do this.

Proof of Theorem 3.5. Suppose for contradiction that for all 8 € [0, 27),
Ns(A, B) + Ns(B,C) > Ns(A,C).

This, of course, is what we would expect classically. We will now make use of the
fact that the two electrons are in the Bell state |®T), which exhibits the following

property.
Exercise 3.4. Show that for all 6 € [0, 2),

1

|@F) = 72(|T9>|T9> + |¢9>|¢9>)-
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Therefore, by a calculation similar to the one in the proof of Claim 3.1,

Pr[B] = Pr [state of ep is |T9>]
= (DT[(L2 @ [1g) (Tol)| @)

Thus, by the law of total probability (i.e., the rule that all probabilities add to one),

Pr[B] = Pr [state of ep is NOT |T9>}
=1— Pr[B]
1

5
Consequently, by the definition of conditional probability and supposing we were to
run this experiment M times and collect statistics,

Ns(A, B) = M Pr[A, B]
— M Pr[A | B] Pr[B]
= ]\jpr[A | B.

Now, by definition,

Pr[A| B] = Pr [state of ep is |0) given state of ep is ||y) = sin @ |0) — cos b |1>}
.2
= sin” 6.

Consequently,

Ns(A, B) = ]\24 sin 6.

Similar reasoning establishes that

M -~ M
Ng(B,C) = 7511(129 and Ng(A,C) = ?sin2 26.

Altogether, then,

— = = M M M
Ns(A,B) 4+ Ng(B,C) > Ng(A,C) = ?sinQQ + ?sin29 > 7sin2 20

= 2sin’6 > sin® 26.
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We have not specified 6, so this should hold for all § € [0, 27). However, if 0 < § < 1
so that sin? @ ~ 62, then

2sin? 60 > sin?20 =— 26° > 46
— 1>2,

which is a contradiction! Therefore, quantum mechanics violates the Bell inequality
in Fact 3.2. [

What is going on here? There are at least two fundamental assumptions that
went into the statement of the theorem. One is that a qubit can simultaneously have
a definite state about two different axes, and the other is that when we measure the
state of a qubit, there is only one outcome of the measurement. We will discuss the
second point in the next section. For now, though, let’s make the innocent-seeming
assumption that, indeed, when we measure the state of a quantum system, we
always obtain one measurement outcome.

If this is so, then we have to contend with the idea that a qubit (such as the spin
of an electron) cannot simultaneously have a definite state about two different axes.
This entails that, pre-measurement, there can be no fact of the matter of what each
individual qubit state is about any axis. In other words, pre-measurement, it is
impossible to give an accurate, local prescription of what the state of Alice and
Bob’s qubits are about the 6-, 20-, etc. axes, because if you could, then the Bell
inequality in Fact 3.2 would be satisfied.

Consequently, as was suggested by the EPR paradox, it is genuinely the case
that any measurement of Alice’s qubit will necessarily and fundamentally change
Bob’s qubit. Because of this, we say that there are no “local hidden variables” that
describe the states of the two qubits. Here, as in the EPR paradox, the word “local”
is in reference to the fact that the two qubits in this experiment could be arbitrarily
far apart, and that we cannot describe the states of the two qubits individually
without contradicting the Bell inequality above. There is, therefore, a deep degree
of non-locality in quantum mechanics, at least under its standard “Copenhagen’
interpretation. That said, it is actually impossible to communicate information
superluminally with this non-locality, so the postulates of relativity hold, despite
this seeming in tension with them. For more on this, see Nielsen and Chuang’s
textbook Quantum Information and Quantum Computation.

)
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3.3. THE MEASUREMENT PROBLEM

But let’s return to that second, innocuous-sounding assumption from before, namely,
that in measuring any quantum mechanical system, we only ever obtain a single
outcome of the measurement. Of course, experience tells us that this is obviously
the case: when we measure the location of an electron, for example, we only ever
see it “here”; we never see it both “here and there”. That would not make sense!
Similarly, when we measure the state of a qubit in the computational basis, for
example, we only ever see it as |0) or |1); we never see it as both. This is all true,
but, interestingly enough, that does not mean that only one measurement outcome
was obtained!

To understand this, let us first take seriously the reductionist idea that every
physical system is reducible to a finite number of quantum systems. This is
essentially just the idea that tables, chairs, you, me, and so forth are but a vast
soup of quarks, electrons, and other Standard Model matter put together in some
complicated way. Yes, there are interesting things going on in some of these systems
(e.g., consciousness), but at the end of the day, all of that is emergent from the
more fundamental interactions of the Standard Model matter.

Okay, now consider an experiment where there is a qubit e, a “qubit state
detector” D (which measures the state of a qubit in the computational basis, say),
and a human H who is operating the detector. The reductionist hypothesis above,
together with Postulates 2.8 and 2.15 of quantum mechanics, entail that there not
only exists a Hilbert space H,. for the qubit, but also Hilbert spaces Hp and Hpy
for the detector and human, respectively, where

Hp = X Hs and Hy = X Hs.
quantum systems S that quantum systems S that
comprise the detector comprise the human

Consequently, there are several quantum states that the qubit, detector, and
human can be in. For example, the qubit can be |0) or |1), as we have discussed
before. Additionally, the detector has at least three physically distinguishable (i.e.,
orthogonal) states:

lready), |qubit is 0), and |qubit is 1).

These correspond to the detector being in the mode “ready to measure the qubit”,
“the detector has measured the qubit to be in the state |0) and is reporting it as such”,
and “the detector has measured the qubit to be in the state |1) and is reporting it
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as such”. Likewise, the human has at least three physically distinguishable states:

|sees “ready”), |sees “qubit is 07), and |[see “qubit is 17).

YW

These correspond to the human seeing the detector being in mode “ready”, “qubit
is 0”7, and “qubit is 17, respectively.

How do these states interface with each other? Well, in the overall, qubit +
detector + human composite system, which has Hilbert space He @ Hp ® Hy, there
are the obvious evolutions:

|0)|ready)|sees “ready”) +—  |0)|qubit is 0)|sees “qubit is 0”)
|1)|ready)|sees “ready”) +— |0)|qubit is 1)|sees “qubit is 17).

These correspond to the physical experiment of performing a computational basis
measurement of a qubit that is in the state |0) or |1), respectively, and the detector
and human getting a respective readout of the measurement result. Note, these
transformations are necessarily unitary (and hence linear) by the Schrodinger
evolution postulate of quantum mechanics (Postulate 2.10).

Now consider the same experiment, but where the initial state of the qubit is the
superposition a|0) + §|1), where «, 5 # 0. Then, the composite qubit + detector +
human system evolution is, by the linearity of the Schrodinger equation,

(a]0) + B|1))|ready)|sees “ready”) +——
a|0)|qubit is 0)[sees “qubit is 07) 4+ 5|1)|qubit is 1)|sees “qubit is 17).

Contrary to the collapse postulate of quantum mechanics (Postulate 2.12), there is no
state collapse here. Instead, there is simply a “larger”, entangled superposition that
includes the detector and human registering two different measurement outcomes.

This conclusion is known as the measurement problem in quantum mechanics.
If you believe what we discussed in Part I, and in particular the conclusion that
in a superposition there is no definitive fact of what the state of the system is,
then what the measurement problem says is that under unitary evolution, every
quantum system evolves into that sort of indeterminant state of affairs when it
interacts with any other quantum system. This includes ourselves. Based on our
everyday experience, however, we know that that cannot be right, because we find
ourselves in determined states all the time.

In the textbook “Copenhagen” interpretation, one gets out of this situation by
postulating the collapse postulate (Postulate 2.12). However, this tends to lead
to a whole new set of questions like, what does it really mean to “measure” a
quantum system? Interestingly, though, there is an out that doesn’t invoke this
Niels Bohr-inspired Copenhagen way of thinking at all.
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3.4. A DIFFERENT WAY OF THINKING ABouUT THIS

Note that under the reductionist hypothesis, one can continue the reasoning from
before by including the lab, the earth, and, in fact, the whole universe into the
mix as well. Doing this, one will find that for every quantum experiment in which
one “measures” a quantum system (i.e., interacts a quantum system with another
“larger” quantum systems like a detector), the whole universe will evolve into a big
superposition of the possible outcomes of that experiment. In this way, there are
“many worlds” created, each with a different outcome, and we become a part of this
multiverse, with different versions of ourselves experiencing the different outcomes.
Any single version of us, however, only experiences one such outcome, and this,
some believe, explains our experience in the laboratory.

This is the germ of Hugh Everett’s many-worlds interpretation of quantum
mechanics (a.k.a. the Everettian interpretation of quantum mechanics). Note that
it differs from the canonical interpretation in that it predicts that for any quantum
experiment, there is generically more than one measurement outcome. In this way,
the assumptions going into Bell’s theorem (Theorem 3.3) are false, so it should
not be surprising that one can violate a Bell inequality in quantum mechanics.
Another way to say the same thing is that if your normative assumptions about
the world include that the universe is local, then Bell’s theorem should increase
your credence that the many-worlds interpretation is the right way to think about
quantum mechanics.

If you are interested in learning more about this interpretation, as well as other
interpretations, I encourage you to read Adam Becker’s outstanding book What is
Real?: The Unfinished Quest for the Meaning of Quantum Physics.
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READING 3
THE CHSH GAME

In the last lecture, we discussed the EPR paradox and Bell’s theorem. These are
consequences of the postulates of quantum mechanics and demonstrate just how
different quantum mechanics is from classical mechanics.

In this reading, you will see how we can exploit Bell’s theorem—and in particular
a violation of a Bell inequality called the CHSH inequality—to achieve a provable
quantum advantage in a type of computational task known as a non-local game.
Incidentally, the violation of the CHSH inequality was the subject of the 2022 Nobel
Prize in Physics, so this stuff is really important in our understanding of physics.

3.1. Non-LocAL GAMES

The essential idea of a non-local game is to exploit a Bell inequality violation to
achieve some sort of quantum computational advantage. These games are prisoner
dilemma-type games in which there are two players, Alice and Bob, and a referee,
Charlie, who asks Alice and Bob questions.

What makes the game “non-local” is that once the game starts, Alice and
Bob are forbidden from communicating to each other. This could be achieve, for
example, by placing each in a signal-impervious room so that no messages can
get through, or by placing Alice and Bob so far away from each other that light
could not travel between them during the course of the game. That said, Charlie is
between Alice and Bob, and Alice and Bob can communicate with Charlie, at least
in a controlled way. More on this below.

3.2. THE CLAUSER-HORNE-SHIMONY-HoLT (CHSH) GAME

We will now specialize to a particular non-local game known as the CHSH game,
which is named after the physicists John Clauser, Michael Horne, Abner Shimony,
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and Richard Holt. The CHSH game is an example of a more general class of games
called XOR games, which are named after the logical exclusive OR operation @
(a.k.a. addition modulo 2), which plays a fundamental role in such games.

Definition 3.3. The CHSH game is a non-local game that proceeds in four stages,
starting at stage 0.

Stage 0:

Stage 1:

Stage 2:

Alice and Bob can communicate at this stage, and together they develop
a strategy. A strategy S is a set of four random variables,

S = {ap, a1, by, b1},

such that all of the variables take values in the set {0,1}. Consequently,
for each of these random variables, there is a certain probability that it
outputs 0 (Pr[ag = 0], Prla; = 0], etc.) and a certain probability that
it outputs 1 (Pr[ag = 1], Pr[a; = 1], etc.). There are no other output
options. Note, here the lower case a corresponds to Alice’s “side” of the
strategy and the lower case b corresponds to Bob’s “side” of the strategy.
A good picture for this stage is Alice and Bob talking and strategizing,

Alice Beb

—>

4—
Alice and Bob are separated and forbidden from communicating for the
remainder of the game. Charlie (the referee) independently generates two
uniformly random bits x,y € {0, 1}, which together as the 2-bit string

q = xy constitutes the question. Charlie sends Alice x (the first bit of the
question) and sends Bob y (the second bit of the question). Pictorially,

Alice Choslie Bolb

S S

Alice, who receives = € {0, 1} from Charlie, evaluates her random variable
a, and then sends the result back to Charlie. Similarly, Bob, who receives
y € {0,1} from Charlie, evaluates his random variable b, and then sends
the result back to Charlie. Pictorially,
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Choslie Rob

Alice
i a“x i b'f
_’. ‘_

Stage 3: Charlie checks if
a; by =x Ny,

where A is the logical AND. If so, then Alice and Bob win. Otherwise,
they lose.

That’s the CHSH game. In summary, the game is this: if Charlie sends
qg = zy € {00,01,10}, then to win, Alice and Bob must answer with the same
bit. If, however, the question is ¢ = xy = 11, then to win, they must answer with
different bits. Due to their inability to communicate during the game, however,
it is impossible for Alice and Bob to know with certainty the bit that the other
received, so they cannot coordinate a direct response based on the other person’s
question. Rather, all they can do is strategize at the beginning knowing that they
will not be able to communicate later. The question is how well can they do in
this situation, and does quantum mechanics somehow let them do better than they
could classically.

Before moving on, we will give an example of a strategy that Alice and Bob
might employ. This example is a deterministic strategy, meaning Pr|ag = 0] is either
0 or 1, and similarly for aq, by, and b;. In other words, in a deterministic strategy,
ap, a1, by, and by are just bit values, as opposed to random variables in which they
could be 0 or 1 with a non-trivial probability.

Example 3.2. Consider the deterministic strategy S = {ag, a1, by, b1 }, where
ag=a; = by =0b; =0.
Then,
o if ¢ =2y =00, then x Ay =0 and ag & by = 0, so Alice and Bob win;
o if g=ay =01, then x Ay =0 and ag ® by = 0, so Alice and Bob win;
o if g=ay =10, then x Ay =0 and a1 ® by = 0, so Alice and Bob win;
o ifg=ay=11,then x Ay =1 and a1 ® by = 0, so Alice and Bob lose.

Thus, with this strategy, Alice and Bob win the CHSH game 75% of the time. As
we will see in the next section, this strategy is actually optimal classically, even
among non-deterministic classical strategies.
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3.3. THE OPTIMAL CLASSICAL STRATEGY

To understand the optimal classical strategy, you will first prove that whatever the
optimal classical strategy for Alice and Bob is, it necessarily fails some amount of
the time. This means that there is no strategy S for which Prg[win] = 1, where*

Prg [win] = i yf{% I agy Dby =x N y}

is the probability that Alice and Bob win using the strategy S.

Problem 3.1. To prove that for all strategies S, Prg[win| < 1, let us suppose for
contradiction that there exists a strategy S = {ag, a1, by, b1 } for which Prg|win| = 1.

(a) Argue that this strategy is deterministic. In other words, argue that if
Prg[win] = 1, then ag, a1, by, and by are each either 0 or 1 with probability one.

(b) Argue that these bits must satisfy the following set of equations:

ao@bozo,
ag by =0,
a1 @ by =0,
a1 ® by = 1.

(c) Show that this is impossible. (Hint: What happens when you sum modulo 2
the left and right sides of the above constraints?) Conclude that there is no
strategy S for which Prgwin| = 1, as desired.

Consequently, no matter what strategy Alice and Bob use, they cannot win all
the time. In other words, they must lose some amount of the time. To quantify
by how much they will lose with the most optimal classical strategy, we perform a
“change of variables” so that instead of talking about the bit values 0 and 1, we can
talk about the signed values 1 and —1, respectively.

Specifically, for all 2,y € {0,1}, let

A, = (—=1D)% and B, = (-1)".

MHere, z,y ~ {0,1} means that z and y are drawn uniformly and independently from the set
{0,1}. In other words, this is notation that reflects Charlie drawing the two bits of the question
uniformly and independently.

93



As desired, these are random variables that take values in the set {—1, 1}. Moreover,
A, and B, have probabilities of being —1 and 1 commensurate with the probabilities
that a, and b, are 1 and 0, respectively. This change of variables may seem like a
pointless thing to do at this stage, however, as we will see shortly, it is this change
of variables that ultimately allows us to non-trivially bound the success probability
of every classical strategy. Before seeing how this is done, though, you should try
your hand to see how the winning criterion for a, and b, carries over to the variables

A, and B,,.

Problem 3.2. Argue that for all strategies S, Alice and Bob win the CHSH game
iff A,B, = (—1)""Y. Conclude that

: _ _ (__1\xN\y
Prg[win| = x,yml?{%,l} [AxBy =(-1) }

Now, for the remainder of this section, we will make use of the conditional
probability that Alice and Bob win, denoted Prg|[win | xy|. This is the probability
that Alice and Bob win given that Charlie has asked the particular question
q =y € {0,1}2. Why do we care about these probabilities? Well, as formalized in
Claim 3.5 below, it turns out that to know these conditional probabilities is enough
to determine the unconditional probability that Alice and Bob win. To understand
this, let’s first establish the following fact about these conditional probabilities.

Claim 3.4. For all strategies S,

Prs[win | ¢ = 00] = Pr[A¢By = 1]
Prs[win | ¢ = 01] = Pr[A¢B; = 1]
Prs[win | ¢ = 10] = Pr[A1 By = 1]
Prg|win | ¢ = 11] = Pr[A1 B = —1]

Proof. By Problem 3.2, Alice and Bob win iff A, B, = (—1)*"Y. Therefore, given that
the question is ¢ = zy = 00, then Alice and Bob win iff AjBy = 1. Consequently,
given that the question is ¢ = 00, Alice and Bob win with probability

Prg[win | ¢ = 00] = Pr[A¢By = 1],

as desired. A similar argument establishes the other three equations. |

We can now use these conditional probabilities to derive a very useful expression
for the (unconditional) probability that Alice and Bob win.
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Claim 3.5. For all strategies S,

1
Prslwin) =~ Y  Prslwin|q= zy].
z,ye{0,1}
Proof. To relate the unconditional probability of winning Prg[win] to the conditional
probabilities of winning Prg[win | ¢ = xy|, note that by the law of total probability
and Bayes’ theorem,

Prgfwin] = Y Prg[win, ¢ = 2y]
z,y€{0,1}
— Z Prg[win | ¢ = zy] Pr[q = zy].
z,y€{0,1}

Now, by the definition of the CHSH game, Charlie generates the question ¢ uniformly,
so each of the four questions in the set {0, 1}? has an equal chance of being asked.
Consequently, Pr[g = zy] = 1/4 and so

1
Prglwin] == > Prg[win | ¢ = ay],
z,y€{0,1}

as desired. [ |

At this point, we just need one more notion from probability theory to prove
the optimal classical strategy for the CHSH game.

Definition 3.4. For a given strategy S and for all x,y € {0,1}, let Es[A,B,] be the
expectation value of the random variable A, B,. In particular, for all z,y € {0, 1},

Es[A,B,] = Pr[A,B, = 1] — Pr[A,B, = —1].

To ensure you are comfortable with this notion, and in particular how it relates
to the conditional probabilities discussed above, you should complete the following
problem before moving on.

Problem 3.3. Show the following.
(a) If ¢ = xy € {00,01,10}, then Es[A,B,| = 2Prg[win | ¢ = zy] — 1.
(b) If ¢ = zy = 11, then Es[A,;B,] = 1 — 2 Prg[win | ¢ = zy|.

We will now prove the first of two essential claims, both of which have to do
with the random variable

C = AyBy+ AyB1 + A1By — A1 By,
which is sometimes called the CHSH quantity.
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Claim 3.6. For all strategies S, Es|C| = 8 Prg|win] — 4.

Proof. By the linearity of the expectation value (a.k.a., the linearity of expectation),
ES[C] = ES[AOBO] + ES[A()BI] + ES[AlBO] — Es[AlBl].

Thus, by the result in Problem 3.3,

Es[C] =2 ( > Prglwin| g = :cy]) — 4.

r,y€{0,1}

But by Claim 3.5,

> Prglwin | ¢ = zy] = 4Prg[win).
z,y€{0,1}

Put together, then, the above two equations imply that
Es[C] = 8Prg[win| — 4,
as desired. |

This result establishes that for all strategies S, a bound on Eg[C] implies a
(potentially strategy-dependent) bound on the probability that Alice and Bob win,
Prg[win|. In particular, if there exists a strategy-independent bound on Eg[C], then
this implies a strategy-independent bound on Prg[win]. Such a bound would act as
an absolute bound on the probability that Alice and Bob can win, no matter their
strategy. This is why the CHSH quantity is so interesting, and it is also why it was
essential to perform the change of variables above.

As we will now see, obtaining a strategy-independent bound on Eg[C], and
hence hence on Prg[win], is actually quite easy.

Claim 3.7 (The CHSH Inequality). For all strategies S, |Es[C]| < 2.

Proof. To prove the claim, it suffices to recognize that the CHSH quantity C' can
be rearranged as follows:

C = A()B() + A()Bl + AlBO — AlBl
= Bo(A() + Al) + Bl<AO — Al)

Since if Ay = Ay, then Ag + A1 = +2 and Ay — A; = 0, and if Ag # Ay, then
Ag+ A; =0 and Ay — A; = %2, it holds that C' = £2. Therefore, by the definition
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of the expectation value of C' and the fact that |a + 0| < |a| + |b| for all a,b € R
(the so-called triangle inequality),

|Es[C]| = [2Pr][C = 2] — 2Pr[C = —2]|
<2Pr[C =2|+2Pr[C = 2]
=2(Pr[C = 2|+ Pr[C = -2))

=1

= 2.
This is the desired result.?! [ |

We are now in a position to prove that no classical strategy can win the CHSH
game more than 75% of the time.

Problem 3.4. Use Claims 3.6 and 3.7 to show that Prg[win] < 3/4 for all strategies
S for which Prg[win] > 1/2, i.e., for all strategies S that are better than just “flipping
a coin”. Conclude that no matter what strategy Alice and Bob choose, they cannot
win the CHSH game more than 75% of the time.

This proves the upper bound on the winning probability for any classical strategy
for the CHSH game. As a corollary, you have also shown that the deterministic
strategy we discussed in Example 3.2 is classically optimal. In the next section,
you will prove that in fact there are quantum strategies that can do considerably
better. The reason, as we shall see, is because quantum mechanics can violate the
CHSH inequality, which is exactly analogous to the phenomenon we saw with Bell’s
theorem in the last lecture.

3.4. A BETTER QUANTUM STRATEGY

We begin with the punchline of this reading, namely that there is a quantum
strategy that provably outperforms every classical strategy in the CHSH game by
quite a large margin.

Claim 3.8. There exists a quantum strateqy S for which

1 1
Prs|win| = - + —= ~ 0.85.
Consequently, using a quantum strategy, Alice and Bob can win the CHSH game
approximately 85% of the time.

21 Another way to show this is to use the fact that for all random variables C, |E[C]| < E[|C]].
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To prove this, let’s return to stage 0 in the CHSH game, where Alice and Bob can
communicate and strategize. Their quantum strategy will consist of two main parts,
both of which are highly quantum. The first part is that Alice and Bob will together
generate the Bell state |®T) and share this between them at stage 0. As was briefly
mentioned in the preceding lecture, they cannot use this resource to communicate
during the game, so the rules of the game will still be respected. However, as this is
now essentially the setup to the EPR experiment, they might be able to exploit the
non-locality of quantum mechanics to do something non-classically (e.g., violate
the CHSH inequality) at a later stage of the game.

The second part of their strategy details how they will generate the bits to
send back to Charlie. These are the random variables a, and b, from before. This
part of their strategy will first consist of them agreeing on a value of 6 € [0, 27).
(Ultimately, they will choose § = /8, however keeping 6 unspecified shows why
§ = m/8 is a good choice.) Next, to actually generate the values a, and b,, Alice
and Bob will measurs their side of the state |®*) in a basis that depends on the
question ¢ and their choice of 6.

Specifically, upon receiving their part of the question ¢ = xy € {0,1}* from
Charlie, Alice and Bob will do the following:

o If z = 0, then Alice measures her side of |®") in the computational basis
({]0),|1)}). She then sends ag to Charlie, where

0 if she measures |0)
an =
’ 1 if she measures |1).

o If z =1, then Alice measures her side of |®) in the basis {|T4g), [499)}. She
then sends a; to Charlie, where

{O if she measures [T9)
a; =

1 if she measures |]q).

o If y = 0, then Bob measures his side of |®1) in the basis {|14),|{4)}. He then
sends by to Charlie, where

b — 0 if he measures |Ty)
711 if he measures o)

o If y = 1, then Bob measures his side of |®T) in the basis {|T_g4),|{_4)}. He
then sends b; to Charlie, where

b — 0 if he measures |T_g)
"7 11 if he measures 14_p)-
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Altogether, S = {ay, a1, by, b1} constitutes their quantum strategy. The basic
idea here is that if Alice and Bob both receive 1, then they rotate their qubits away
from each other so that their measurement bases are 360 away from each other. That
is important in the CHSH game, because Alice and Bob must send Charlie different
bits if ¢ = zy = 11. If, however, only one or neither receives 1, then their bases
are f away from each other, and this increases the chance that they send back the
same bit to Charlie (which they must do to win).

To see that this strategy not only works, but works better than any classical
strategy, it suffices to do what we did before and analyze the conditional probabilities
that Alice and Bob win on each of the four possible questions ¢ = zy € {0,1}2, and
then to take the average. In other words, to compute Prg[win] for this strategy, we
will again look at the conditional distributions Prg[win | ¢ = zy] and use Claim 3.5,
which establishes that

Prg[win] = E > Prglwin| ¢ = zy].
x,y€{0,1}

We note that unlike in the case of the classical strategies, it is sufficient for this
quantum strategy to reason at the level of the random variables a, and b,, not the
variables A, = (—1)% and B, = (—1)%. Because of this, it is useful to have an
analogue of Claim 3.4 for the conditional probabilities Prg[win | ¢ = xy], but in
terms of a, and b, as opposed to A, and B,.

Claim 3.9. For all strategies S,

Prs|win | ¢ = 00] = Pr[ag = 0,b9 = 0] + Prfag = 1,69 = 1],
Prs[win | ¢ = 01] = Prlag = 0,b; = 0] + Prag = 1,b1 = 1],
Prs[win | ¢ = 10] = Pr[a; = 0,bp = 0] + Pr[a; = 1,5y = 1],
Prs|win | ¢ = 11] = Pr[a; = 1,b; = 0] 4+ Prf[a; = 0,b; = 1].

Proof. By the definition of the CHSH game, Alice and Bob win iff a, ® b, = 2 A y.
Thus, given that the question ¢ = xy = 00, then Alice and Bob win iff ag ® by = 0.
Consequently, given that the question is ¢ = 00, Alice and Bob win with probability

Prgwin | ¢ = 00] = Pr[ag & by = 0.

Of course, ag ® by = 0 iff ag = by = 0 or a; = by = 1. These are mutually exclusive
events, so

Prlag @ by = 0] = Prlap = 0,by = 0] + Prlag = 1,by = 1].
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Consequently,
Prg[win | ¢ = 00] = Prfag = 0,bp = 0] + Pr[ag = 1, by = 1],
as desired. A similar argument establishes the other three equations. |

What are the values of these probabilities? Well, we can find them by analyzing
Alice and Bob’s quantum strategy! For example, to find Prg[win | ¢ = 00], note that
if ¢ = xy = 00, then, by the definition of their quantum strategy, Alice measures
her side of @) in the computational basis and sets ag to her measurement result,
whereas Bob measures his side of |®7) in the basis {|1y), [14)}, and he sets by = 0
iff he measures |1y). In other words,

Prlag = 0,by = 0] = (®*[(|0)(0] @ [1)(14])|®),
Prlag = 1,0y = 1] = (| (|1)(1] @ [14) (4] )|@T).

By a calculation similar to the one in the proof of Claim 3.1, it is not difficult to
show that both of these probabilities evaluate to %cos2 6, so

Prs[win | ¢ = 00] = cos? 6.

You should now try to prove one or more of the remaining three conditional winning
probabilities.

Problem 3.5. Show at least one of the following.??
(a) Prswin | ¢ = 01] = cos® 6.
(b) Prs[win | ¢ = 10] = cos* 0.
(c) Prswin | ¢ = 11] = sin® 36.
Consequently, by Claim 3.5,

1
Prglwin] == > Prg[win | ¢ = zy]
z,ye{0,1}

= le (3 cos? 0 + sin® 39) )

2To show (b) and (c), use the trigonometric identities cos(—6) = cos(#), sin(—0) = —sin,
cos(a + b) = cosacosb —sinasinb, and sin(a + b) = sinacosb + cosasinb. These imply, for
instance, that cos§ = cos 26 cos 6 + sin 26 sin § and sin 30 = sin 260 cos 6 + cos 20 sin 6.
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Using a bit of calculus, one can show that this quantity is maximized when 6 = 7 /8.
The remarkable thing is that for this choice of 6,

1 1

5 + o 0.85.

Therefore, the above quantum strategy with § = 7 /8 provably outperforms all

classical strategies by quite a considerable margin. This establishes Claim 3.8.
But why does this quantum strategy work? Well, it’s the same reason for the

bizarre behavior we saw when discussing Bell’s theorem: a Bell inequality violation

(and hence the non-locality of quantum mechanics)! In particular, this quantum

strategy violates the CHSH inequality (Claim 3.7). To see this, simply plug the

above winning probability into the formula of Claim 3.6 to obtain that

Prg[win] =

Es[C] ~ 8(0.85) — 4
=2.8
> 2.

Thus, |Es[C]| > 2, so quantum mechanics violates the CHSH inequality! Inciden-
tally, this inequality violation was shown experimentally in the 1980s by physicists
Alain Aspect, John Clauser, and Anton Zeilinger, and for this work they were
awarded the 2022 Nobel Prize in Physics.

Also, the winning bound of about 85% is optimal quantumly. This follows from
a very famous result in quantum information theory known as Tsirelson’s bound,
after the physicist Boris Tsirelson.
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PART IV
GROVER’S ALGORITHM
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LECTURE 4

THE CIRCUIT MODEL OF QUANTUM COMPUTATION

Discussion 4.1. Discuss with your group what you took away from Part I1I.

In Part 111, we discussed Bell’s theorem, one of the most profound consequences
of entanglement. We then saw in the associated reading that a version of Bell’s
theorem can manifest into a sort of “quantum computational advantage” in the sense
that there exists a quantum strategy to the CHSH game that provably outperforms
all classical strategies.

In this lecture, we will introduce the circuit model of quantum computation. By
the end of the lecture, you will know how to formally define a “quantum computer”.
In the associated reading, you will apply this definition and learn about Grover’s
algorithm, which is an example of a quantum algorithm that provably outperforms
all classical algorithms for a computational problem known as unstructured search.

4.1. GATE SETS AND UNIVERSALITY

In Part I, we saw several important examples of unitary matrices. I repeat some
of those examples here, together with their circuit representations:

 the 1-qubit 7" or 7/8 gate:

1 0
r=(y wn). T

e the 1-qubit H or Hadamard gate:

m= sl 4)

e the 1-qubit S or phase gate:

s=(p ). 8-



o the 2-qubit SWAP gate:

SWAP =

o O =
o~ OO
— o o O

0
1
0
0 0
e and the 2-qubit controlled-NOT or CNOT gate:

[

. ——

CNOT =

o O = O
_ o O O
o= O O

1
0
0
0

In the circuit model of quantum computation, unitary matrices like these take
the role of the fundamental classical operations like AND, OR, and NOT.

Definition 4.1. A finite set of unitary matrices G is called a gate set, and the
elements of G are called quantum gates.

Example 4.1.
o The Clifford gate set, Geiftora = {H, S, CNOT}.
o The Clifford + T gate set, Gongorarr = {1, H, S, CNOT}.

Importantly, not all gate sets are created equal. Some have a very important
property known as universality.

Definition 4.2 (Informal). A gate set G is universal iff for all unitary matrices
U € U(2), one can approximate U to arbitrary precision by a finite product of gates
G192 - . . g¢ from G.%3

Importantly, the Clifford gate set Gcuigora 18 not universal, but the Clifford +
T gate set is. Also, thanks to a result known as the Solovay—Kitaev theorem, all
universal gate sets are equivalent to each other, but not just in the sense that they
can approximate each other (they can), but also in the more surprising sense that
they can approximate each other using a small number of gates in the product.

Exercise 4.1. The Clifford 4+ 7" gate set is important from both the theoretical
and experimental points of view. Now, if S = T2, then there is no reason to include
S in the gate set, at least theoretically. I claim, however, that including S is crucial
experimentally. Why do you think that might be so?

2To properly formalize this statement requires introducing the topological notion of density and
the linear algebraic notion of operator distance. If you are interested in these ideas, check out
Nielsen and Chuang’s textbook Quantum Information and Quantum Computation.
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4.2. QuaNTUM CIRCUITS

Given a gate set, we can define quantum circuits over it.

Definition 4.3.

o An n-qubit quantum circuit QQ over a gate set G is an operator in U(2") that
admits the matrix product decomposition

Q =UsUj—1--- Uy,

where each U; € U(2") admits the tensor product decomposition

Ui = gk, gr € GU{l},
k=1

where m; < n (as U; is an n-qubit unitary) and I, is the 2 x 2 identity matrix.
Pictorially, every quantum circuit can be represented as a directed acyclic
graph, where the directedness is left to right, e.g.,

Uq Us Us U, Us

| | | | | |
| — 93 |- i | | |
| | | | | |
L g L1 l l L [ ga L
g7 g3
input | : — : | | 96 | — | routput
| | | | | |
| | | | | |
Ao

This representation also explicates the tensor product decomposition of the
individual layers U; in terms of the gates in G. For example:

Uy =930 L®@1Q¢g, Ur=1®gg [, and Us=I1®g® [ ® I,
where the identity I is represented in the diagram by a solid black line.

« Above, d denotes the depth of @ (the number of “layers” of @)), and the number
of non-identity gates that comprise () is the size of Q.

e On input = € {0,1}", the output of Q is the quantum state
Qz) =Qlr) = > a:lz).

2e{0,1}n
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e On input x € {0,1}", the probability that Q outputs y € {0,1}", denoted
Pr[Q(x) = |y)], is the probability that a computational basis measurement of
Q|z) is |y). In particular, by the Born rule,

Pr [Q(x) = [y)] = (21Q"(ly){y) Q=)
= ((Q"[y))((y|Qlx))
= ((ylQ[x))"({ylQ|z))
= [(ylQlz)[>.
o We say Q computes f:{0,1}" — {0,1}" iff for all z € {0,1}",
PrlQ(e) = ()] >

Let’s see a concrete example.

Example 4.2. Let Q = SWAP. This is a 2-qubit quantum circuit over G =
{SWAP}:

Though primitive, this is a valid quantum circuit whose size and depth are both 1.
This circuit computes the 2-bit permutation function PERM : zyx9 — x9x1. This
can be seen by evaluating the effect of @ on the computational basis states (which
is tantamount to a truth table for the unitary operation SWAP):

Q(00) = SWAP|0)[0) = [0)]0)
Q(01) = SWAP|0)[1) = [1)]0)
Q(10) = SWAP[1)[0) = [0)]1)
Q(11) = SWAP|1)[1) = [1)[1).

Therefore,
Q(xlxg) = |332>’£L’1> = |PERM<[L‘1$2)>

Consequently, on input z129, ) outputs xox; with probability one. In this case, we
say that () computes PERM ezxactly.

Now it’s your turn. Try one or more of the following problems.
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Exercise 4.2.

(1) Prove the circuit identity:

—Sk= = AZH7-

What does this mean in plain matrix multiplication language?

(2) Quantum circuits can do more than just compute functions. In particular,
they can be used to generate certain quantum states from computational
states, which can then be used for quantum information tasks (e.g., quantum
protocols such as superdense coding or quantum teleportation). As a particular
instance of this, show that the following quantum circuit generates the Bell

state |©7) = Z5(|0)[0) + [1)[1)):

0) —{ ]
0)

a
A\

(3) Argue that the following circuit is a 4-bit random number generator:

0)
0)
0)
0)

4.3. CIrculT FAMILIES AND UNIFORMITY

As we discussed in Part I, in computation we are ultimately interested in functions
f:{0,1}* — {0,1}*. In particular, we are interested in functions where the input
size is not fived. For example, we care about the function PRIME : {0, 1}* — {0, 1},
which on any input x—mno matter how large—outputs 1 if z encodes a prime and 0
otherwise. To this end, we want a way for a circuit to compute a function whose
input size can vary.
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Definition 4.4.

o A quantum circuit family Q over a gate set G is a pair (Q,G), where Q = {Q,, :
n € N} is a collection of n-qubit quantum circuits G (one for each n € N).

« On input z € {0, 1}*, the output of Q is the state Q(z) = Q|y|7). Therefore,
on input = € {0, 1}*, the probability that @ outputs y € {0, 1}* is the same as
in Definition 4.3, namely

Pr(Q() = ly)| = [(|Qul2)[*

Here, |z| is the length of the string x, i.e., the number of bits that comprise x.

o We say Q computes f:{0,1}* — {0,1}* iff for all z € {0,1}*,

2

PrlQe) = ()] >
Interestingly, quantum circuit families (as well as classical circuit families) can

compute “hard” functions.

Fact 4.1. For all universal gate sets G, there exists a quantum circuit family over
G that computes an uncomputable function.”

This implies that quantum circuit families on their own are too powerful to be
a good model of computation. To reduce their power to a more reasonable level,
we will impose what is known as a “uniformity condition” on the circuit family.
The most basic type of uniformity condition enforces that in a quantum circuit
family @ = {@Q, : n € N}, the map n — C,, is computable. This implies that there
is a Python program M such that for all n € N, M(n) outputs a description of
the circuit @),,. Interestingly, by imposing this condition, uniform circuit families
exactly characterize the set of computable functions.

Fact 4.2. f: {0,1}* — {0,1}* is computable iff there exists a quantum circuit
family Q = {Q,, : n € N} over a universal gate set G such that:

(i) Q computes f,
(ii) the map n+— C,, is computable, i.e., the family @) is uniform.

Because of this, uniform circuit families constitute a reasonable model of com-
putation because it agrees with the Church—Turing—Deutsch thesis. Ultimately, this
means that we can use uniform families of quantum circuits as a definition of a
“quantum computer”. This is what we will do in the next section.

24The basic idea is that you can encode a difficult (even uncomputable) function into the map
n — Q. If you are interested in this idea, check out the complexity class P/poly.
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4.4. THE CIRCUIT MODEL OF QUANTUM COMPUTATION
Definition 4.5.

o A quantum computer is a pair (@, G), where ) is a uniform family of quantum
circuits over a gate set G.

o We say (Q,G) is efficient (a.k.a. polynomial time) iff every @, € Q is a
polynomial size quantum circuit and the uniformity map n +— @),, is computable
in polynomial time by a Python program.?’

e On input z € {0,1}*, the output of (Q,G) is the quantum state
Qz) = Qpz(z).

o Wessay (Q,G) computes f:{0,1}* — {0,1}* iff for all z € {0,1}*,
2

PrlQ() = If()] > 5.
Importantly, quantum computers cannot compute uncomputable functions.

Fact 4.3 (Corollary of Fact 4.2). A function f : {0,1}* — {0,1}* is computable (in
the sense of the Church—Turing thesis, Thesis 1.4) iff it is computable by a quantum
computer.

Moreover, efficient or polynomial time quantum computers can compute anything
that efficient classical computers can.

Fact 4.4. If f:{0,1}* — {0,1}* is computable by an efficient classical computer,
then f is computable by an efficient quantum computer.

However, it is expected that efficient quantum computers can compute functions
that no efficient classical computer can (recall Conjecture 1.7).

Conjecture 4.5. There exists f : {0,1}* — {0,1}* computable by an efficient
quantum computer but not computable by any efficient classical computer.

In computational complexity theory, this conjecture is summed up in a single line:
BPP # BQP. Of course, to fully understand what this means requires introducing
some complexity theory notions, which we do not have time for. That said, if you
are interested in this beautiful theory, then I encourage you to check out Arora and
Barak’s outstanding textbook Computational Complexity: A Modern Approach.

2>This means that given n, one can efficiently describe the circuit @,,. This stronger uniformity
condition is called P-unifomity.
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READING 4

GROVER’S ALGORITHM

In the previous lecture, we discussed universal gate sets (and in particular the
Clifford + T gate set) as well as the circuit model of quantum computation. At
the end of the day, we formally defined what a quantum computer is, and we
stated without proof that quantum computers cannot compute more functions
than classical computers. This leaves open the possibility, however, that perhaps
there are functions that a quantum computer can compute faster than any classical
computer. Given the stuff we saw with the CHSH game in Part II1, this is actually
a pretty reasonable intuition.

In this final reading, you will be guided through a proof that, in fact, there
is a function (or more properly, a computational task) that a quantum computer
can do provably faster than any classical computer. The exact task is called the
unstructured search problem, and the quantum algorithm that solves it faster than
any classical algorithm is called Grover’s algorithm, which is named after its founder,
physicist Lov Grover.

4.1. ORACLES AND THE QUERY COMPLEXITY PARADIGM

To formally understand the unstructured search problem requires a quick discussion
about oracles, which are essentially algorithmic subroutines that do not hinder the
complexity of the larger algorithm of which they are a part.

Definition 4.6. Let f : {0,1}* — {0,1} be a (not necessarily computable!)
function. We call a (classical or quantum) operation Oy that computes f an oracle
for f. Quantumly, Oy is a family of quantum circuits that acts on the computational
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basis states in the following way:°
Oy : |x) — (—1)7 @),

Notice, in this definition we have not specified how difficult it is to compute
f. This is on purpose, because it may, in fact, be very difficult (or impossible!)
to compute f. This is the paradigm of query complexity, in which we assume we
have some black box function (the oracle), and we do not care at all about how
difficult it is to implement the black box. Instead, what we care about is minimizing
the number of calls to the black box O;. As we will see with Grover’s algorithm,
quantum computers require provably fewer queries to the oracle than any classical
computer.

4.2. THE UNSTRUCTURED SEARCH PROBLEM

Before we discuss Grover’s algorithm, we need to introduce the computational
problem that Grover’s algorithm solves.

The Unstructured Search Problem
Input: A function f: {0,1}" — {0, 1} as an oracle such that

flx)=1 ifx=a*€{0,1}"
f(x) =0 otherwise.

Output: z* (the “needle in the haystack”) by querying f.

Problem 4.1. Let N = 2". Argue that, on the average, every classical probabilistic
algorithm that solves the unstructured search problem by querying f must make at
least N/2 queries. In other words, argue that to find z* by merely asking questions
of the form “What is f(x)?” requires, on the average, N/2 such questions.

In the next section, we will see if we can do better quantumly.

ZTypically, one defines a quantum oracle Of as the map |z)|0) — |z)|f(z)). This is arguably
more natural from a computational point of view, however, it turns out to be equivalent to
the oracle definition we have given (which is formally known as a phase oracle). See Nielsen
and Chuang’s discussion of Grover’s algorithm for more on this.
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4.3. GROVER'S ALGORITHM

To solve unstructured search on a quantum computer, first recall the quantum
oracle we have for f:
Os : ) = (=1)/W|z).

This is the black-box that we will ask questions to. In particular, we are interested
in the number of questions of the form “What is Oy|z)?” that we need to ask to
determine z*. We will see that this number is considerably smaller than the number
of questions we have to ask in the classical case (Problem 4.1).
We are now ready to study Grover’s algorithm.
Grover’s Algorithm:
1. Prepare n qubits in the state [0™).
2. Apply H®™ (the n-fold tensor product H@ H ® --- @ H).
3. Perform the following Grover iteration r times:
(i) apply Oy,
(i) apply H®",
(iii) apply the Grover diffusion operator 2|0™){(0"| — Iy,*"
(iv) apply H®".

4. Measure all n qubits in the computational basis.
As a circuit, Grover’s algorithm is simply:

repeat r times

0) [} [H] L]

0) ——{H} (1] [H}
Oy 2(0")(0"| — In

0) —{H}- (2] [}

2TRecall that [07)(0"| is the outer product of |0™) and (0"|, which is the matrix multiplication of
the column vector |0™) with the row vector (0"], and thus results in a 2" x 2" (unitary) matrix.
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In this algorithm, a single Grover iteration (step 3) corresponds to applying
what is sometimes called the Grover operator,
G = H®(20")(0"| — In)H*"O¢
= (2|9)(®[ - In)Oy,

where, by the result in question (c) of Problem 2.4,
@) = HZ"|0")

1
== 2 |2
VN oy

Moreover, the number r parametrizes the number of times we call the oracle O
(i.e., the number of questions “What is Of|x)?”). Remarkably, r is considerably
smaller in the quantum case than the classical value of r = N/2 (Problem 4.1).

Theorem 4.6. Using an efficient quantum computer (namely, that specified by
Grover’s algorithm), it is possible to solve the unstructured search problem with
probability 1 — O(27") using only r = O(v/N) queries to f. This is quadratically
fewer than the classical lower bound of N/2 queries (Problem 4.1).

We prove this in the next section.

4.4. CORRECTNESS OF GROVER’S ALGORITHM

To prove that Grover’s algorithm does what it says, we will begin by building some
geometric intuition behind the algorithm, which will assist in its analysis.

Problem 4.2.

(a) Let |1;) be the state in Grover’s algorithm at step i. Find |¢1) and |¢9). (Hint:
Recall question (c) in Problem 2.4.)

(b) If
1
) = == > |2),
N -1 ze{0,1}"
TET”
prove that

) = |5l + =l

73



Consequently, |®) is a vector in the two-dimensional subspace of C?" that is
spanned by |a) and |z*). Thus, we can think of |®) as a two-dimensional vector
that mostly points in the direction of |a):

|2*)

A

|©)
0
—— o)
Here, 6y € [0, 27) is such that

N -1
cos bty = N

1
sin 90 =

VN’
Thus, using the formula you derived in question (b) of Problem 4.2, it holds that
|®) = cosby|a) + sin Gy|z™).

You will now analyze what happens geometrically in step 3 of Grover’s algorithm.
From this, we will be able to deduce the ideal number of iterations r needed to find
|z*) with high probability. We will start by understanding how the oracle Oy acts
on the two-dimensional representation derived above.

Problem 4.3. Let 6 € [0,27). If |[¢)) = cosf|a) + sin 0|z*), show that
OlY) = cosB|a) — sin f|z*).

Geometrically, you are being asked to show that the oracle Oy rotates |1) through
the |«) axis by an angle of 26, as in the picture below:
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You will now prove one more geometric fact, but this time about the Grover
operator G.

Problem 4.4. Let G = (2|®)(®| — In)O; be the Grover operator. Show that

G|z*) = cosw|z™) — sinw]|a)
Gla) = sinw|x*) 4 cosw|a),

where
2v N — 1 2
sinwziN and cosw:\/l—sin29:1——N.

(The geometric interpretation of this is shown in the next corollary.)

Corollary 4.7. If |)) = cosO|a) + sin 0|z*), then
G|Y) = cos(0 + w)|a) + sin(0 + w)|z*)

Pictorially,
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Gl)

Proof. This follows from Problem 4.4 and elementary trigonometry:

G|Y) = G(cosb|a) + sin 0|z*))
= cos 0(G|a)) + sin O(G|z™))
= cos f(sinw|z*) + cosw|a)) + sin f(cosw|z™) — sinw|a))
= (cosf cosw — sinfsinw)|a) + (cos @ sinw + sin O cos w)|x™)
= cos(0 + w)|a) + sin(f + w)|z*).
|

Therefore, the Grover operation rotates a given state closer to the target state
|2*) by an angle w. We can use this to our advantage to now find |z*) with high
probability.

Claim 4.8. Ifr = E W 5 then the probability that we measure G"|®) to be in
state |x*) is 1 — O(1/N) = o@2™).

Proof. Since
|®) = cos by|a) + sin Gy|z™),

by the previous corollary
G"|®P) = cos(bp + rw)|a) + sin(Gy + rw)|z*).

We want r such that cos(6y + rw) = 0 because then when we measure the state, we
will obtain |z*). Since

cos(fp +rw) =0 if Oy+rw= ;T,

ZHere, |2] denotes the nearest integer to z € R.
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we choose

-]
w

We will now show that this choice of r is O(v/N). This requires quite a bit of
algebra. First, using the Taylor series
3 (271)! p2ntl

arcsin(x) = = + 5 +- 20 (n12 2m + 1

_|_ ORI
it follow that

0y = arcsin ——

\/N
ol

and
. 2vN -1
w = arcsin ————
/N1 1
o N N3/2
2 1
=—+0|—
VN N)
2 1
N (W))
Consequently,®”
-0
r=|2 0—‘
| w
T 1 1
§—W+O(N3/z

Here, we use the fact that if |z| < 1, then H% =l-z+a?—2+---.
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Therefore, with r = E\/NW 30

Pr {measure G"|®) in state \x*)] = sin®(fy + rw)

= sin? (é+@j@+0<;ﬁ>)

—_——
6o T w other terms

- (5o( )
oelof)
o)
-of})

Altogether, then, we have proven Theorem 4.6, as desired. Therefore, Grover’s
algorithm shows that quantum computers can provably outperform classical com-
puters for the unstructured search problem.

It is natural to wonder if there is any quantum algorithm that could outperform
Grover’s algorithm. It turns out, however, that this is false.

Fact 4.9. Any quantum algorithm that solves the unstructured search problem with
probability at least 1/2 4+ 9, for any 6 > 0, must make at least cv/N queries to f,
for some constant ¢ > 0.

Therefore, Grover’s algorithm is the optimal quantum algorithm for the unstruc-
tured search problem.

Here, we use the fact that sin (5 + ) = cosz and that cosz =1 — O(z?).
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